The improved arithmetic-geometric mean inequalities for matrix norms

dc.contributor.authorGumus I.H.
dc.contributor.authorTaskara N.
dc.date.accessioned2020-03-26T18:48:19Z
dc.date.available2020-03-26T18:48:19Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn this paper, we prove a scalar inequality such that this inequality is an improvement of the classical arithmetic-geometric mean inequality.We obtain its matrix version and investigate Hilbert-Schmidt and trace norm of this matrix version. © 2013 I. Halil Gumus and Necati Taskara.en_US
dc.identifier.endpage1446en_US
dc.identifier.issn1312885Xen_US
dc.identifier.issue29-32en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1439en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/30214
dc.identifier.volume7en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematical Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectArithmeticgeometric mean inequalityen_US
dc.subjectPositive semidefinite matrixen_US
dc.subjectUnitarily invariant normen_US
dc.titleThe improved arithmetic-geometric mean inequalities for matrix normsen_US
dc.typeArticleen_US

Dosyalar