Effects of Histopathological Image Pre-processing on Convolutional Neural Networks

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier B.V.

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, classification performance of histopathological images which are processed by pre-processing algorithms using convolutional neural network structure is examined. The images are divided into four different pre-processing classes with their original state and processed with three different techniques. These classes are; original, normal pre-processing, other normal pre-processing and over pre-processing. Histopathological images of these four classes include cancerous and non-cancerous image patches. For these image classes, cancer patch classification is done using the same convolutional neural network structure. In this view, pre-processing effects on the classification success of the convolutional neural network is examined. For the normal pre-processing algorithm, background noise reduction and cell enhancement are applied. For over pre-processing, thresholding and morphological operations are applied in addition to normal preprocessing operations. At the end of the experiments, the most successful classification results are produced with the normal pre-processing algorithms. This is why the meaningful features of the image are left for the CNN structure that automatically learns the feature. The over pre-processing algorithm removes most of these important features from the image. © 2018 The Authors. Published by Elsevier Ltd.

Açıklama

2018 International Conference on Computational Intelligence and Data Science, ICCIDS 2018 -- 7 April 2018 through 8 April 2018 -- 137053

Anahtar Kelimeler

classification, CNN, convolutional neural networks, histopathological image, preprocessing

Kaynak

Procedia Computer Science

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

132

Sayı

Künye