On the (s,t)-fibonacci and fibonacci matrix sequences

dc.contributor.authorCivciv, Haci
dc.contributor.authorTurkmen, Ramazan
dc.date.accessioned2020-03-26T17:27:21Z
dc.date.available2020-03-26T17:27:21Z
dc.date.issued2008
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIt is always fascinating to see what results when seemingly different areas mathematics overlap. This article reveals one such result; number theory and linear algebra are intertwined to yield complex factorizations of the classic Fibonacci, Pell, Jacobsthal, and Mersenne numbers. Also, in this paper we define a new matrix generalization of the Fibonacci numbers, and using essentially a matrix approach we show some properties of this matrix sequence.en_US
dc.identifier.endpage173en_US
dc.identifier.issn0381-7032en_US
dc.identifier.startpage161en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/22539
dc.identifier.volume87en_US
dc.identifier.wosWOS:000255916600013en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherCHARLES BABBAGE RES CTRen_US
dc.relation.ispartofARS COMBINATORIAen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectFibonacci numersen_US
dc.subjectPell numbersen_US
dc.subjectJacobsthal numbersen_US
dc.subjectMersenne numbersen_US
dc.titleOn the (s,t)-fibonacci and fibonacci matrix sequencesen_US
dc.typeArticleen_US

Dosyalar