On the (s,t)-fibonacci and fibonacci matrix sequences
dc.contributor.author | Civciv, Haci | |
dc.contributor.author | Turkmen, Ramazan | |
dc.date.accessioned | 2020-03-26T17:27:21Z | |
dc.date.available | 2020-03-26T17:27:21Z | |
dc.date.issued | 2008 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | It is always fascinating to see what results when seemingly different areas mathematics overlap. This article reveals one such result; number theory and linear algebra are intertwined to yield complex factorizations of the classic Fibonacci, Pell, Jacobsthal, and Mersenne numbers. Also, in this paper we define a new matrix generalization of the Fibonacci numbers, and using essentially a matrix approach we show some properties of this matrix sequence. | en_US |
dc.identifier.endpage | 173 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.startpage | 161 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/22539 | |
dc.identifier.volume | 87 | en_US |
dc.identifier.wos | WOS:000255916600013 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | CHARLES BABBAGE RES CTR | en_US |
dc.relation.ispartof | ARS COMBINATORIA | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Fibonacci numers | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Jacobsthal numbers | en_US |
dc.subject | Mersenne numbers | en_US |
dc.title | On the (s,t)-fibonacci and fibonacci matrix sequences | en_US |
dc.type | Article | en_US |