Recognition of sun-pest infected wheat kernels using artificial neural networks [Süne tahribatli bu?day tanelerinin yapay sinir a?lari kullanilarak taninmasi]

dc.contributor.authorBabalik A.
dc.contributor.authorBaykan Ö.K.
dc.contributor.authorBotsall F.M.
dc.date.accessioned2020-03-26T17:18:57Z
dc.date.available2020-03-26T17:18:57Z
dc.date.issued2007
dc.departmentSelçuk Üniversitesien_US
dc.description2007 IEEE 15th Signal Processing and Communications Applications, SIU -- 11 June 2007 through 13 June 2007 -- Eskisehir -- 73089en_US
dc.description.abstractIn mis study it is aimed to recognize sun-pest infected kernels in a sample sub-group of wheat kernels taken from a bulk of Bezostaja wheat. Recognition of the damaged kernels is realized by evaluating light transmittance data of the kernels through use of Artificial Neural Networks (ANN). Wheat kernels in the sub-group are left to fall in an oblique groove with semi-circular cross-section. While the kernels cross a LED light source, light transmitted through the kernel fall on a sensor just across the light source. Analog signals induced by the sensor are recorded and histograms of these signals are evaluated by using ANN in order to recognize sun-pest infected wheat kernels in the sub-group. Two different ANN models: Multi Layer Perceptron (MLP) and Self Organizing Map (SOM) models were used in the recognition process.en_US
dc.identifier.doi10.1109/SIU.2007.4298865en_US
dc.identifier.isbn1424407192; 9781424407194
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2007.4298865
dc.identifier.urihttps://hdl.handle.net/20.500.12395/21772
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.relation.ispartof2007 IEEE 15th Signal Processing and Communications Applications, SIUen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleRecognition of sun-pest infected wheat kernels using artificial neural networks [Süne tahribatli bu?day tanelerinin yapay sinir a?lari kullanilarak taninmasi]en_US
dc.typeConference Objecten_US

Dosyalar