Automatic brain tumor segmentation with k-means, fuzzy c-means, self-organizing map and otsu methods

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Selçuk Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The human brain is an amazing organ of the human nervous system and controls all functions of our body. Brain tumors emerge from a mass of abnormal cells in the brain, and catching tumors early often allows for more treatment options. For diagnosing brain tumors, it has been benefited mostly from magnetic resonance images. In this study, we have developed the segmentation systems using the methods as K-Means, Fuzzy C-Means, Self-Organizing Map, Otsu, and the hybrid method of them, and evaluated the methods according to their success rates of segmentation. The developed systems, which take the brain image of MRI as input, perform skull stripping, preprocessing, and segmentation is performed using the clustering algorithms as K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu Methods. Before preprocessing, the skull region is removed from the images in the MRI brain image data set. In preprocessing, the quality of the brain images is enhanced and the noise of the images is removed by some various filtering and morphological techniques. Finally, with the clustering and thresholding techniques, the tumor area of the brain is detected, and then the systems of the segmentation have been evaluated and compared with each other according to accuracy, true positive rate, and true negative rate.
İnsan beyni, insan sinir sisteminin en önemli organıdır ve vücudumuzun tamamını kontrol eder. Beyin tümörleri beyindeki normal olmayan hücrelerden oluşur ve tümörleri erken tespit etmek birçok tedavi seçeneklerinin uygulanmasına olanak sağlar. Beyin tümörlerinin teşhisi için çoğunlukla manyetik rezonans görüntülerinden yararlanılmıştır. Bu çalışmada, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot ve bu metotların birleşiminden oluşan hibrid metotlar kullanılarak beyin tümör segmentasyon sistemleri geliştirilmiştir. Bu metotların segmentasyon başarı oranları tespit edilmiş ve birbirleriyle karşılaştırılmıştır. Geliştirilen sistemlerde, ilk olarak MRI beyin görüntülerini girdi olarak alınır, sonra kafatası bölgesinin görüntüden ayrılması, önişleme ve Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu metot gibi algoritmalarla segmentasyon işlemleri uygulanır. Önişlemden önce, kafatası bölgesi, MRI beyin görüntüsü veri setindeki görüntülerden çıkarılır. Ön işlemede, beyin görüntülerinin kalitesi iyileştirilir ve görüntülerin gürültüsü, çeşitli filtreleme ve morfolojik tekniklerle kaldırılır. Son olarak, kümeleme ve eşikleme teknikleri ile beynin tümör bölgesi tespit edildi. Daha sonra, segmentasyon sistemleri değerlendirildi ve doğruluk, gerçek pozitif oranı ve gerçek negatif oranına göre birbirleriyle karşılaştırıldı.

Açıklama

Anahtar Kelimeler

Brain Tumor Segmentation, Medical Imaging, Fuzzy C-Means, K-Means, Self-Organizing Map, Otsu Method, Beyin Tümörü Segmentasyonu, Tıbbi Görüntüleme, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot

Kaynak

Selçuk-Teknik Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Özel Sayı

Künye

Aşlıyan, R., Atbakan, İ. (2020). Automatic brain tumor segmentation with k-means, fuzzy c-means, self-organizing map and otsu methods. Selçuk-Teknik Dergisi, (Özel Sayı), 267-281.