Skin lesion segmentation with semantic SAM: Pros and cons
dc.authorid | 0000-0002-7040-7952 | |
dc.authorid | 0000-0002-1999-2797 | |
dc.authorid | 0000-0002-5965-0687 | |
dc.authorid | 0000-0002-0770-599X | |
dc.authorid | 0000-0003-1828-5844 | |
dc.contributor.author | Gül, Sevda | |
dc.contributor.author | Aydın, Bekir Murat | |
dc.contributor.author | Akgün, Devrim | |
dc.contributor.author | Kara, Rabia Öztaş | |
dc.contributor.author | Çetinel, Gökçen | |
dc.date.accessioned | 2025-02-13T06:55:07Z | |
dc.date.available | 2025-02-13T06:55:07Z | |
dc.date.issued | 2024 | |
dc.department | Başka Kurum | |
dc.description.abstract | The Segment Anything Model (SAM), introduced in April 2023, has gained prominence for its ability to generalize across various image segmentation tasks. This study evaluates SAM's performance on skin lesion segmentation using both public (3463 images) and private (773 images) dermoscopy image datasets, the latter collected with ethical approval from *** University Training and Research Hospital. The segmentation performance was assessed using Intersection over Union (IoU) and Dice metrics, achieving Dice scores of 0.6598 (IoU: 0.5865) for the private database and 0.6513 (IoU: 0.5624) for the public database. A post-processing step was applied to refine the segmentation results, enhancing SAM's ability to delineate lesion boundaries. However, while SAM demonstrated strong generalization, its performance on low-contrast and irregularly shaped lesions indicates the need for further adaptation. This paper highlights SAM’s potential in medical image segmentation while outlining its limitations, especially in specialized tasks like skin lesion analysis. | |
dc.identifier.citation | Gül, S., Aydın, B. M., Akgün, D., Kara, R. Ö., Çetinel, G. (2024). Skin lesion segmentation with semantic SAM: Pros and cons. Selcuk University Journal of Engineering Sciences, 23 (3), 77-84. | |
dc.identifier.endpage | 84 | |
dc.identifier.issn | 2757-8828 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 77 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/54399 | |
dc.identifier.volume | 23 | |
dc.language.iso | en | |
dc.publisher | Selçuk Üniversitesi | |
dc.relation.ispartof | Selcuk University Journal of Engineering Sciences | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Başka Kurum Yazarı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Skin Lesion Segmentation | |
dc.subject | Segment Anything Model | |
dc.subject | Deep Learning | |
dc.subject | Cilt Lezyonu Segmentasyonu | |
dc.subject | Her Şeyi Segmentleme Modeli | |
dc.subject | Derin Öğrenme | |
dc.title | Skin lesion segmentation with semantic SAM: Pros and cons | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Sevda GÜL, Bekir Murat AYDIN, Devrim AKGÜN, Rabia ÖZTAŞ KARA, Gökçen ÇETİNEL.pdf
- Boyut:
- 517.94 KB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: