Deep learning with SMOTE techniques for improved skin lesion classification on unbalanced data

dc.authorid0000-0002-8218-3458en_US
dc.authorid0000-0002-3960-5141en_US
dc.contributor.authorAl-Asadi, Mustafa A.
dc.contributor.authorAltun, Adem Alpaslan
dc.date.accessioned2023-01-17T10:01:29Z
dc.date.available2023-01-17T10:01:29Z
dc.date.issued2022en_US
dc.departmentSelçuk Üniversitesi, Teknoloji Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractSkin cancer has become a major public health concern around the world, with an increasing incidence in recent decades. The morphological characteristics of skin lesions are thought to be an important component of skin cancer diagnosis and early detection. Thus, with rapid advances in image classification, more emphasis has been placed on computer-aided diagnosis (CAD) of skin lesions according to their morphological features. However, small datasets or an imbalance of skin cancer datasets are the two most important issues that can hinder the success of skin cancer detection. This paper introduces a method for dealing with class imbalance and data scarcity that is based on the Synthetic Minority Oversampling Technique (SMOTE). The improved images were then used to train the Deep Learning Convolutional Neural Network (DLCNN) model. The proposed data augmentation technique is used to generate a new skin dataset for the HAM10000 dataset using dermoscopic images of seven skin lesion classes. According to the empirical results, the improved strategy proposed in this study has statistically significant effects on improving performance with respect to accuracy (85.99%), precision (90%), recall (88%), and F1-score (88%). Moreover, the proposed classification strategy It outperforms some of the techniques used to balance melanoma detection data.en_US
dc.identifier.citationAl-Asadi, M. A., Altun, A. A., (2022). Deep learning with SMOTE techniques for improved skin lesion classification. Selcuk University Journal of Engineering Sciences, 21 (03), 097-104.en_US
dc.identifier.endpage104en_US
dc.identifier.issn2757-8828en_US
dc.identifier.issue3en_US
dc.identifier.startpage97en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/44840
dc.identifier.volume21en_US
dc.institutionauthorAl-Asadi, Mustafa A.
dc.institutionauthorAltun, Adem Alparsalan
dc.language.isoenen_US
dc.publisherSelçuk Üniversitesien_US
dc.relation.ispartofSelcuk University Journal of Engineering Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectClass imbalanceen_US
dc.subjectDermatoscopyen_US
dc.subjectDeep convolutional networken_US
dc.subjectHAM10000 dataseten_US
dc.subjectPythonen_US
dc.subjectSkin cancer recognitionen_US
dc.titleDeep learning with SMOTE techniques for improved skin lesion classification on unbalanced dataen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Y1.pdf
Boyut:
447.67 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: