Takım aşınması ve yüzey pürüzlülüğünün yapay sinir ağları ve bulanık mantık yöntemleri ile tahmin edilmesi
Yükleniyor...
Dosyalar
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Selçuk Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışmasının amacı takımda kesme işlemi esnasında meydana gelen değişiklikleri, oluşturulan entegre sistem ve yazılım ile on-line olarak takip ederek takım aşınması ve yüzey pürüzlülüğünü yapay sinir ağları ve bulanık mantık yöntemleri ile tahmin etmektir. Takım durumunu en iyi şekilde gözlemleyebilmek için sistemde takım durumunu temsil edebilecek veriler toplanmıştır. Oluşturulan değişik parametrelerdeki yapay sinir ağları öncelikle örnek deney verileri kullanılarak eğitilmiş, ardından test verileri ile denenmiştir. Bulanık mantık ise yapay sinir ağları ile tahmin edilen aşınma ve yüzey pürüzlülüğü değerlerinin belirlenen seviyelerde sınıflandırılması için kullanılmıştır. Bu tez çalışması için yazılan program takım durumunu on-line olarak izleme, sensör verilerini kaydetme, işlem seyrini grafik üzerinde izleme ve gerektiğinde uyarı-kontrol sağlamak için kullanılabilir.
The goal of this study is prediction of tool wear and surface roughness with the integrated system made by on-line monitoring of the changes on tool during cutting operations and using artificial neural networks and fuzzy logic methods. For best monitoring the tool condition, multiple sensor data are collected to represent the tool condition. Artificical neural networks with different parameters is first trained with sample experimental data and then tested with test data. Fuzzy logic is used classiffication of tool wear and surface roughness which is estimated with neural network according to the predefined levels. The software written for this study can be used to monitor tool condition on-line, saving sensor data, viewing the process on a graphic and producing alarm-control signals when it is necessary.
The goal of this study is prediction of tool wear and surface roughness with the integrated system made by on-line monitoring of the changes on tool during cutting operations and using artificial neural networks and fuzzy logic methods. For best monitoring the tool condition, multiple sensor data are collected to represent the tool condition. Artificical neural networks with different parameters is first trained with sample experimental data and then tested with test data. Fuzzy logic is used classiffication of tool wear and surface roughness which is estimated with neural network according to the predefined levels. The software written for this study can be used to monitor tool condition on-line, saving sensor data, viewing the process on a graphic and producing alarm-control signals when it is necessary.
Açıklama
Anahtar Kelimeler
Bulanık mantık, Fuzzy logic, Takım aşınması, Tool wear, Tornalama, Turning, Yapay sinir ağları, Artificial neural networks, Yüzey pürüzlülüğü, Surface roughness
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Şeker, H. (2010). Takım aşınması ve yüzey pürüzlülüğünün yapay sinir ağları ve bulanık mantık yöntemleri ile tahmin edilmesi. Selçuk Üniversitesi, Yayımlanmış yüksek lisans tezi, Konya.