Transfer öğrenmede yeni yaklaşımlar

dc.contributor.advisorArslan, Ahmet
dc.contributor.authorKoçer, Barış
dc.date.accessioned2015-02-10T12:45:33Z
dc.date.available2015-02-10T12:45:33Z
dc.date.issued2012-03-30
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractKlasik makine öğrenmesi teknikleri, sadece yeterli miktarda ve uygun eğitim verisi olduğunda verimli çalışabilmektedir. Gerçek hayatta ise makine öğrenmesi yöntemlerini tam anlamıyla verimli bir şekilde çalıştıracak, tüm durumları kapsayan eğitim verisi bulmak bazı durumlarda zor, bazı durumlarda ise maliyetli bir iştir. Ayrıca koşulların değişmesiyle eldeki eğitim verisi güncelliğini kaybederek artık kullanılamaz duruma da gelebilir. Bu gibi durumlarda benzer görevler arası bilgi alışverişine olanak sağlayarak makine öğrenmesi için gerekli eğitim verisine olan ihtiyacı azaltmaya çalışan yaklaşımların bütününe ―Transfer Öğrenme‖ denir. Bu tez çalışmasında transfer öğrenmeye, optimizasyon problemleri penceresinden bakılarak yeni yaklaşımlar geliştirilmiştir. Ayrıca optimizasyon problemleri için geliştirilen yaklaşımları sınıflandırma problemlerinde de kullanabilmek amacıyla genetik algoritmalar - yapay sinir ağları hibrit yaklaşımı kullanılmıştır. Bu çalışmalara ek olarak ―örnek transferi‖ yaklaşımı için genetik algoritmalardan faydalanılarak yeni bir ağırlıklandırma metodu geliştirilmiştir. Son olarak, transfer öğrenme yaklaşımlarından ―parametre transferi‖ ve ―örnek transferi‖ yaklaşımları birleştirilerek yüksek performanslı bir transfer yaklaşımı geliştirilmiş ve mevcut yöntemle karşılaştırılmıştır. Sonuç olarak bu tez çalışmasında transfer öğrenmenin temel sorunlarına çözüm olabilecek ve transfer öğrenmenin performansını arttırabilecek yeni yaklaşımlar ortaya konulmuş, transfer öğrenmenin avantajlarının optimizasyon problemlerinde de kullanılabilmesine olanak sağlayacak yöntemler geliştirilmiştir.en_US
dc.description.abstractTraditional machine learning techniques can work efficiently if it has enough training data. But in some cases, it is may be difficult or costly to find suitable training data which provides machine learning techniques work efficiently. Also, training data may become outdated because of changed conditions and so it can't be used in new case. Approaches which try to transfer knowledge between related domains to reduce the need for training data in machine learning are named as ―Transfer Learning‖. In this thesis, transfer learning is evaluated for optimization problems by developing new approaches. Proposed approaches are also applied to classification problems by genetic algorithms - artificial neural network hybrid approaches. Additionaly a new weighting method for instance transfer is also proposed by using genetic algorithms. Finally in this thesis a high performance transfer learning approach is developed by combining two transfer learning approaches, "instance transfer" and "parameter transfer" and the test results are compared to existing approach. As the result, new approaches which can solve the main problems of transfer learning and improve the performance of the transfer learning are proposed and it is also provided to take advantage of transfer learning methods for optimization tasks.en_US
dc.identifier.citationKoçer, B. (2012). Transfer öğrenmede yeni yaklaşımlar. Selçuk Üniversitesi, Yayımlanmış doktora tezi, Konya.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/1429
dc.language.isotren_US
dc.publisherSelçuk Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectGenetik algoritmaen_US
dc.subjectHibrit algoritmalaren_US
dc.subjectTransfer öğrenmeen_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectArtificial neural networksen_US
dc.subjectGenetic algorithmen_US
dc.subjectHybrid algorithmsen_US
dc.subjectTransfer learningen_US
dc.titleTransfer öğrenmede yeni yaklaşımlaren_US
dc.title.alternativeNew approaches in transfer learningen_US
dc.typeDoctoral Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1_removed (4).pdf
Boyut:
2.75 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Barış Koçer
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: