Twitter Verilerinden Doğal Dil İşleme Ve Makine Öğrenmesi İle Hastalık Tespiti

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Selçuk Üniversitesi Mühendislik Fakültesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu çalışmada twitterdaki kullanıcıların yazmış oldukları mesajların hastalık konulu olup olmadığı ve hastalık türleri tespit edilmiştir. Bu amaçla gözetimli ve gözetimsiz makine öğrenmesi algoritmaları, TF-IDF ve BOW yöntemleri ile çıkarılan özellikler ile denenmiş ve karşılaştırmalar yapılmıştır. Veriler Python betikleri ile twitter üzerinden toplanmıştır. Algoritmaları uygulamak için Python için geliştirilmiş Scikit-Learn kütüphanesi kullanılmıştır. Gözetimsiz olarak verilerin kümelenmesinde %68.60’lık bir başarı elde edilirken, gözetimli algoritmalar ile yapılan sınıflandırmalarda %97.48’lik başarı oranına ulaşılmıştır.
In this study, we determined whether the subject of the messages of the twitter users were about a disease and what kind of diseases they were. For this purpose, supervised and unsupervised machine learning algorithms were tested and compared using the features extracted via TF-IDF and BOW methods. Data were collected with Python scripts from Twitter. The Scikit-Learn library which was developed for Python was used to implement the algorithms. The clustering algorithms which are unsupervised methods achieved an accuracy level of %68.60, while the performance of the supervised classification algorithms reached to the accuracy level of %97.48.

Açıklama

Anahtar Kelimeler

Twitter, Hastalık Tanıma, Doğal Dil İşleme, Makine Öğrenmesi, Disease Recognition, Natural Language Processing, Machine Learning

Kaynak

Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

8

Sayı

4

Künye

Öztürk, A., Durak, Ü., Badıllı, F.. (2029), Twitter Verilerinden Doğal Dil İşleme Ve Makine Öğrenmesi İle Hastalık Tespiti. Konya Mühendislik Bilimleri Dergisi. 8,(4), 839-852.