Twitter Verilerinden Doğal Dil İşleme Ve Makine Öğrenmesi İle Hastalık Tespiti
Yükleniyor...
Dosyalar
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Selçuk Üniversitesi Mühendislik Fakültesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada twitterdaki kullanıcıların yazmış oldukları mesajların hastalık konulu olup olmadığı ve hastalık türleri tespit edilmiştir. Bu amaçla gözetimli ve gözetimsiz makine öğrenmesi algoritmaları, TF-IDF ve BOW yöntemleri ile çıkarılan özellikler ile denenmiş ve karşılaştırmalar yapılmıştır. Veriler Python betikleri ile twitter üzerinden toplanmıştır. Algoritmaları uygulamak için Python için geliştirilmiş Scikit-Learn kütüphanesi kullanılmıştır. Gözetimsiz olarak verilerin kümelenmesinde %68.60’lık bir başarı elde edilirken, gözetimli algoritmalar ile yapılan sınıflandırmalarda %97.48’lik başarı oranına ulaşılmıştır.
In this study, we determined whether the subject of the messages of the twitter users were about a disease and what kind of diseases they were. For this purpose, supervised and unsupervised machine learning algorithms were tested and compared using the features extracted via TF-IDF and BOW methods. Data were collected with Python scripts from Twitter. The Scikit-Learn library which was developed for Python was used to implement the algorithms. The clustering algorithms which are unsupervised methods achieved an accuracy level of %68.60, while the performance of the supervised classification algorithms reached to the accuracy level of %97.48.
In this study, we determined whether the subject of the messages of the twitter users were about a disease and what kind of diseases they were. For this purpose, supervised and unsupervised machine learning algorithms were tested and compared using the features extracted via TF-IDF and BOW methods. Data were collected with Python scripts from Twitter. The Scikit-Learn library which was developed for Python was used to implement the algorithms. The clustering algorithms which are unsupervised methods achieved an accuracy level of %68.60, while the performance of the supervised classification algorithms reached to the accuracy level of %97.48.
Açıklama
Anahtar Kelimeler
Twitter, Hastalık Tanıma, Doğal Dil İşleme, Makine Öğrenmesi, Disease Recognition, Natural Language Processing, Machine Learning
Kaynak
Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
8
Sayı
4
Künye
Öztürk, A., Durak, Ü., Badıllı, F.. (2029), Twitter Verilerinden Doğal Dil İşleme Ve Makine Öğrenmesi İle Hastalık Tespiti. Konya Mühendislik Bilimleri Dergisi. 8,(4), 839-852.