Yarasa algoritması kullanarak yapay sinir ağlarının eğitilmesi

dc.contributor.advisorKodaz, Halife
dc.contributor.authorKamal, Lubna Luay Kamal
dc.date.accessioned2019-01-10T13:16:11Z
dc.date.available2019-01-10T13:16:11Z
dc.date.issued2018-05-07
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractSon zamanlarda araştırmacılar tarafından doğadan ilham alınan birçok meta-sezgisel algoritmalar geliştirilmektedir. Bu meta-sezgisel algoritmalardan birisi sürü zekasına dayalı ve popülasyon tabanlı olan Yarasa algoritmasıdır. Yarasa algoritması birçok alanda kullanılmaktadır. Bu tez çalışmasında Yarasa algoritması yapay sinir ağlarının eğitimi için kullanılmıştır. Yapay sinir ağlarının sınıflandırma başarısını etkileyen birden fazla faktör bulunmaktadır. Bunlardan en önemlisi yapay sinir ağlarının ağırlıklarının belirlenmesidir. Bu tez çalışmasında yarasa algoritması yapay sinir ağlarının ağırlıklarının güncellenmesinde kullanılmıştır. Önerilen yöntemin performansını değerlendirmek için UCI veri ambarından alınan 10 adet veri kümesi üzerinde testler yapılmıştır. Aynı zamanda yarasa algoritmasının parametrelerinden ses şiddeti, sinyal yayma oranı ve yarasa sayısı parametrelerinin analizi yapılmıştır. En iyi sınıflandırma doğruluğunu veren parametre değerleri tespit edilmiştir. Elde edilen sonuçlar literatürde yapılan çalışmalarla karşılaştırılmıştır. Deneysel sonuçlara göre önerilen sınıflandırma yöntemi 6 adet veri kümesinde en iyi sınıflandırma doğruluğuna ulaşmıştır, 4 adet veri kümesinde ise makul sınıflandırma doğruluğuna ulaşmıştır.en_US
dc.description.abstractRecently, many meta-heuristic algorithms that are inspired by the nature have been developed by researchers. One of these meta-heuristic algorithms is the Bat algorithm, which is based on swarm intelligence and population. The bat algorithm has been used in many areas. In this thesis study, Bat algorithm is used for the training of artificial neural networks. There are many factors that affect the classification success of artificial neural networks. The most important of them is the determination of the weights of artificial neural networks. In this thesis study, the bat algorithm was used to update the weights of artificial neural networks. In order to evaluate the performance of the proposed method, tests were performed on 10 data sets taken from the UCI data warehouse. At the same time, the parameters of the bat algorithm were analyzed for loudness, signal emission rate and number of bats parameters. Parameter values giving the best classification accuracy have been determined. The results obtained are compared with the literature studies. According to the experimental results, the proposed classification method has reached the best classification accuracy in 6 data sets and the reasonable classification accuracy in 4 data sets.en_US
dc.identifier.citationKamal, L. L. K. (2018). Yarasa algoritması kullanarak yapay sinir ağlarının eğitilmesi. Selçuk Üniversitesi, Yayımlanmış yüksek lisans tezi, Konya.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/14286
dc.language.isotren_US
dc.publisherSelçuk Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectSınıflandırmaen_US
dc.subjectYarasa algoritmasıen_US
dc.subjectMeta-sezgisel algoritmalaren_US
dc.subjectOptimizasyonen_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectBat algorithmen_US
dc.subjectMeta-heuristic algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectArtificial neural networken_US
dc.subjectClassificationen_US
dc.titleYarasa algoritması kullanarak yapay sinir ağlarının eğitilmesien_US
dc.title.alternativeTraining artificial neural networks using bat optimization algorithmen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Lubna Luay Kamal Kamal.pdf
Boyut:
2.05 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: