Image enhancement in positron emission tomography using expectation maximization

dc.contributor.authorErol, Halil
dc.contributor.authorKöklükaya, Etem
dc.contributor.authorAlkan, Ahmet
dc.date.accessioned2017-01-06T12:23:29Z
dc.date.available2017-01-06T12:23:29Z
dc.date.issued2006
dc.descriptionhttp://sjam.selcuk.edu.tr/sjam/article/view/170en_US
dc.description.abstractPositron Emission Tomography (PET) tomography is one of the imaging modality. PET Tomography scanners collect measurements of a patient's in vivo radiotracer distribution. These measurements are reconstructed into cross-sectional images. Tomographic image reconstruction forms images of functional information in nuclear medicine applications and the same principles can be applied to modalities such as X-ray computed tomography and Single Photon Computed Tomography (SPECT). Reconstruction in PET can be done in two ways, direct and algebraic methods. Iterative reconstruction is an algebraic reconstruction method. The great advantage of iterative methods is that correction to attenuation and depth-dependent detector response can be incorporated to the reconstruction process. One of the drawbacks of the iterative reconstruction methods is the huge computation, due to large system matrices. This system matrix is very sparse. In Matlab 7, matrices having elements more than 100 million can not be executed or stored due to its size restriction. To overcome this problem we have implemented a new storage technique. By this technique, large system matrices can be manipulated in Matlab7. Reconstructed images are compared with the images which are obtained by using direct reconstruction algorithms, namely, Filtered Backprojection.en_US
dc.identifier.citationErol, H., Köklükaya, E., Alkan, A. (2006). Image enhancement in positron emission tomography using expectation maximization. Selcuk Journal of Applied Mathematics, 7 (2), 27-40.en_US
dc.identifier.endpage40
dc.identifier.issn1302-7980en_US
dc.identifier.startpage27
dc.identifier.urihttps://hdl.handle.net/20.500.12395/3752
dc.identifier.volume7
dc.language.isoenen_US
dc.publisherSelcuk University Research Center of Applied Mathematicsen_US
dc.relation.ispartofSelcuk Journal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectIterative reconstruction methodsen_US
dc.subjectImage reconstructionen_US
dc.subjectPET tomographyen_US
dc.subjectYinelemeli rekonstrüksiyon yöntemlerien_US
dc.subjectİmge yeniden yapılandırmaen_US
dc.subjectPET tomografisien_US
dc.titleImage enhancement in positron emission tomography using expectation maximizationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
170-331-1-SM.pdf
Boyut:
212.94 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: