Saklı Markov model tabanlı sınıflandırıcıların geliştirilemesi

dc.contributor.advisorArslan, Ahmet
dc.contributor.authorUğuz, Harun
dc.date.accessioned2018-03-09T12:25:17Z
dc.date.available2018-03-09T12:25:17Z
dc.date.issued2007
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Elektrik Elektronik Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractSınıflandırma; pek çok bilim dalında kullanılan karar verme işlemidir. Sınıflandırma; bir veri gurubu içindeki bir nesneyi temsil eden özelliklerin formüle edildiği ve o nesneyi temsil eden özellikler kullanılarak nesnenin daha önceden belirlenmiş olan sınıflardan birine en düşük hatayla dahil edildiği süreç olarak tanımlanabilir. Saklı Markov Modelleri (SMM) ses ve görüntü tanıma sistemlerinde sıkça kullanılan sınıflandırıcı metotlardan biridir. SMM'lerin esnekliği model topolojisinde ve gözlem dağılımlarında görülür. Bu modeller özellikle ses gibi istatistiksel özellikleri zamanla değişen sinyallerin modellenmesinde kullanılmaktadır. Literatürde genel olarak olasılık yoğunluğu işlevine göre sürekli ve kesikli olmak üzere iki tür SMM sınıflandırıcı yapısından söz edilmektedir. Bu tez çalışması kapsamında hem sürekli hemde kesikli SMM sınıflandırıcıları üzerinde durularak mevcut SMM sınıflandırıcı yöntemlerinin tespit edilen eksik yanları giderilerek SMM`de kullanılan algoritmaların performanslarının artırılması amaçlanmıştır. Bu amaçla bulanık mantık, genetik algoritmalar, bulanık integraller, kümeleme algoritmaları gibi bir dizi teknikten faydalanılmıştır. Geliştirilen SMM tabanlı yeni sınıflandırıcı yaklaşımlarının sınıflandırma başarıları Fırat Tıp Merkezi kardiyoloji kliniğinde hastalıklı ve sağlıklı kişilerden elde edilen Doppler kalp verileri ile Transcranial Doppler yöntemi ile elde edilen beyin hastalıklarına ait Doppler verileri üzerinde test edilmiştir. Elde edilen sınıflandırma sonuçları kullanılan veri kümeleri üzerinde yapılmış olan daha önceki çalışmalara ait sınıflandırma sonuçları ile kıyaslanarak gerçekleştirilen yeni sınıflandırıcı yaklaşımların başarıları ortaya konulmuştur.en_US
dc.description.abstractClassification used in many scientific area is a decision making process. In this process, features which represent a subject in a data set are formulated. In addition, related subject is labeled to one of the determined classes with the least error rate via these features in this step. Hidden Markov Model (HMM) is one of the classification methods, which is commonly used in pattern recognition systems. Flexibility of HMM is seen in model topology and in observation distributions. These models are especially for modeling of signals whose statitistical features can change in time such as sound signals. In literature, two kinds of Hidden Markov Model structure according to probability density process have been studied, which are continuous and discrete HMM. In this thesis, both continuous HMM and discrete HMM are studied. In addition, we aim to increase classification performances of these algorithms. Therefore, we have profit from some artificial intelligence methods such as Fuzzy logic, Geentich Algorithm, Fuzzy Integrals, clustering algoriths. Developed HMM based classifiers have been applied to two different data sets. First of them is Doppler heart data set which has been obtained from patient and health subjects in Fırat Medical Cardiology Center. Second of them is Trancranial Doppler data set which has been obtained from brain patients. Classification performances of our classifier on these data sets are surveyed. After that, these performances have been compared with other classifier?s performances studied on the same data sets in order to test the successful of our new approach.en_US
dc.identifier.citationUğuz, H. (2007). Saklı Markov model tabanlı sınıflandırıcıların geliştirilemesi. Selçuk Üniversitesi, Yayımlanmış doktora tezi, Konya.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/9481
dc.language.isotren_US
dc.publisherSelçuk Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectPattern recognitionen_US
dc.subjectÖrüntü tanımaen_US
dc.subjectClassificationen_US
dc.subjectSınıflandırmaen_US
dc.subjectHidden Markov modelen_US
dc.subjectSaklı Markov modelien_US
dc.subjectGenetic algorithmsen_US
dc.subjectGenetik algoritmalaren_US
dc.subjectFuzzy integralen_US
dc.subjectBulanık integralen_US
dc.titleSaklı Markov model tabanlı sınıflandırıcıların geliştirilemesien_US
dc.title.alternativeImprovement of hidden Markov model based classifiersen_US
dc.typeDoctoral Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
212384.pdf
Boyut:
109.15 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tez
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: