Yazar "Güngör, Ayşe Dilek" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bounding the extremal eigenvalues of a complex matrix(Selcuk University Research Center of Applied Mathematics, 2009) Güngör, Ayşe DilekIn this study, we have obtained bounds for extreme singular values of a complex matrix A of order nxn.In addition, we have found bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Hankel matrix in the forms H=(1/(i+j-1))ni,j=1, H1/2=(1/(i+j-1)1/2)ni,j=1 and Hn=[1/(g+(i+j)h)]n i,j=1 respectively.Öğe Bounding the extremal eigenvalues of a complex matrix(2009) Güngör, Ayşe DilekIn this study, we have obtained bounds for extreme singular values of a complex matrix A of order n x n. In addition, we have found bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Hankel matrix in the forms H (1/(i j - 1))n_{i;j1}, H{circ 1/2}(1/(i j - 1){1/2})n_{i;j1} and H_n[1/(g (i j)h)]n_{i;j1}, respectively.Öğe Bounds for Extreme Singular Values of a Complex Matrix and Its Applications(Element, 2006) Güngör, Ayşe Dilek; Türkmen, RamazanIn this study, we have obtained bounds for extreme singular values of a complex matrix A of order n x n. In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix in the forms H = (1(i +j - 1))(i,j=1)(n), Ho-1/2 = (1 (i + j - 1)(1/2))(i,j=1)(n), T-n = [1(g + (i - j)h)](i,j= 1)(n) and H-n = [1(g + (i+j)h)](i,j=1)(n), respectively.Öğe Generalization for Estrada Index(Amer Inst Physics, 2010) Güngör, Ayşe Dilek; Çevik, Ahmet Sinan; Karpuz, Eylem G.; Ateş, Fırat; Cangül, İsmail NaciIn this paper the Estrada index of Hermite matrix is firstly defined and investigated. In fact this is a natural generalization of Estrada, distance Estrada and Laplacian Estrada indices. Thus all properties about them can be handled by this new index.Öğe Singüler ve Norm Değerleri İçin Sınırlar(Selçuk Üniversitesi Fen-Edebiyat Fakültesi, 2005) Güngör, Ayşe Dilek; Sinan, AliBu çalışmada öncelikle n × n tipindeki bir kompleks A matrisinin singüler değerleri için iz ve determinant kullanılarak sınırlar elde edilmiştir. Aynı zamanda satır (sütun) Euclidean normu kullanılarak singüler değerlerinin çarpımı için sınırlar elde edilmiştir. Son olarak ise ( ) n i j n g i j h T , 0 1 = ? ? ? ? ? ? + ? = Cauchy-Toeplitz matrisi ve ( ) n i j n g i j h H , 0 1 = ? ? ? ? ? ? + + = Cauchy-Hankel matrisinin Euclidean ve spektral normları için bir alt sınır bulunmuştur.Öğe An Upper Bound for the Condition Number of a Matrix in Spectral Norm(Elsevier Science Bv, 2010) Güngör, Ayşe DilekThe lower bound for the smallest singular value of the matrix A which has been obtained in the remark of paper [1] is incorrect. In this short note, we actually point out this wrong result. The following correction should be noted for this paper.