Bounds for Extreme Singular Values of a Complex Matrix and Its Applications

Yükleniyor...
Küçük Resim

Tarih

2006

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Element

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, we have obtained bounds for extreme singular values of a complex matrix A of order n x n. In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix in the forms H = (1(i +j - 1))(i,j=1)(n), Ho-1/2 = (1 (i + j - 1)(1/2))(i,j=1)(n), T-n = [1(g + (i - j)h)](i,j= 1)(n) and H-n = [1(g + (i+j)h)](i,j=1)(n), respectively.

Açıklama

Anahtar Kelimeler

Hilbert matrix, Hadamard square root of Hilbert matrix, Toeplitz matrix, Hankel matrix, singular value, lower bound, upper bound

Kaynak

Mathematical Inequalities & Applications

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

9

Sayı

1

Künye

Güngör, A. D., Türkmen, R., (2006). Bounds for Extreme Singular Values of a Complex Matrix and Its Applications. Mathematical Inequalities & Applications, 9(1), 23-31.