Bounds for Extreme Singular Values of a Complex Matrix and Its Applications
Yükleniyor...
Dosyalar
Tarih
2006
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Element
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, we have obtained bounds for extreme singular values of a complex matrix A of order n x n. In addition, we have found a bounds for the extreme singular values of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix in the forms H = (1(i +j - 1))(i,j=1)(n), Ho-1/2 = (1 (i + j - 1)(1/2))(i,j=1)(n), T-n = [1(g + (i - j)h)](i,j= 1)(n) and H-n = [1(g + (i+j)h)](i,j=1)(n), respectively.
Açıklama
Anahtar Kelimeler
Hilbert matrix, Hadamard square root of Hilbert matrix, Toeplitz matrix, Hankel matrix, singular value, lower bound, upper bound
Kaynak
Mathematical Inequalities & Applications
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
9
Sayı
1
Künye
Güngör, A. D., Türkmen, R., (2006). Bounds for Extreme Singular Values of a Complex Matrix and Its Applications. Mathematical Inequalities & Applications, 9(1), 23-31.