Modeling of trivalent chromium sorption onto commercial resins by artificial neural network
dc.authorid | 0000-0001-7747-9441 | |
dc.authorid | 0000-0002-2098-580X | |
dc.contributor.author | Tümer, Abdullah Erdal. | |
dc.contributor.author | Edebali, Serpil. | |
dc.date.accessioned | 2020-03-26T20:15:13Z | |
dc.date.available | 2020-03-26T20:15:13Z | |
dc.date.issued | 2019 | |
dc.department | Selçuk Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü | en_US |
dc.description.abstract | In this research, artificial neural network (ANN) model having three layers was developed for precise estimation of Cr(III) sorption rate varying from 17% to 99% by commercial resins as a result of obtaining 38 experimental data. ANN was trained by using the data of sorption process obtained at different pH (2-7) values with Amberjet 1200H and Diaion CR11 amount (0.01-0.1 g) dosage, initial metal concentration (4.6-31.7 ppm), contact time (5-240 min), and a temperature of 25 degrees C. A feed-forward back propagation network type with one hidden layer, different algorithm (transcg, trainlm, traingdm, traincgp, and trainrp), different transfer function (logsig, tansig, and purelin) for hidden layer and purelin transfer function for output layer were used, respectively. Each model trained for cross-validation was compared with the data that were not used. The trainlm algorithm and purelin transfer functions with five neurons were well fitted to training data and cross-validation. After the best suitable coefficient of determination and mean squared error values were found in the current network, optimal result was searched by changing the number of neurons range from 1 to 20 in the current network hidden layer. | en_US |
dc.identifier.citation | Tümer, A. E., Edebali, S. (2019). Modeling of Trivalent Chromium Sorption onto Commercial Resins by Artificial Neural Network. Applied Artificial Intelligence, 33(4), 349-360. | |
dc.identifier.doi | 10.1080/08839514.2019.1577015 | en_US |
dc.identifier.endpage | 360 | en_US |
dc.identifier.issn | 0883-9514 | en_US |
dc.identifier.issn | 1087-6545 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 349 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1080/08839514.2019.1577015 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/38001 | |
dc.identifier.volume | 33 | en_US |
dc.identifier.wos | WOS:000463824200004 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Edebali, Serpil. | |
dc.language.iso | en | en_US |
dc.publisher | TAYLOR & FRANCIS INC | en_US |
dc.relation.ispartof | APPLIED ARTIFICIAL INTELLIGENCE | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | artificial neural network | |
dc.subject | ANN | |
dc.subject | Trivalent Chromium Sorption | |
dc.subject | layer | |
dc.title | Modeling of trivalent chromium sorption onto commercial resins by artificial neural network | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Abdullah Erdal TÜMER.pdf
- Boyut:
- 1.55 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Full Text Access