A solvable system of difference equations

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

KOREAN MATHEMATICAL SOC

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, we show that the system of difference equations x(n )= ay(n-1)(p )+ b(x(n-2)y(n-1))(p-1)/cy(n-1) + dx(n-2)(p-1), y(n) = alpha x(n-1)(p )+ beta(y(n-2)x(n-1))(p-1)/gamma x(n-1) + delta y(n-2)(p-1), n is an element of N-0 where the parameters a, b, c, d, alpha, beta, gamma, delta, p and the initial values x(-2) , x(-1), y(-2), y(-1) are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.

Açıklama

Anahtar Kelimeler

Difference equations, solution in closed-form, forbidden set, asymptotic behaviour

Kaynak

COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY

WoS Q DeÄŸeri

N/A

Scopus Q DeÄŸeri

Cilt

35

Sayı

1

Künye

Taskara, N., Tollu, D. T., Touafek, N., Yazlik, Y. (2020). A Solvable System of Difference Equations. Communications of the Korean Mathematical Society, 35(1), 301-319.