A solvable system of difference equations
Yükleniyor...
Dosyalar
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
KOREAN MATHEMATICAL SOC
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we show that the system of difference equations x(n )= ay(n-1)(p )+ b(x(n-2)y(n-1))(p-1)/cy(n-1) + dx(n-2)(p-1), y(n) = alpha x(n-1)(p )+ beta(y(n-2)x(n-1))(p-1)/gamma x(n-1) + delta y(n-2)(p-1), n is an element of N-0 where the parameters a, b, c, d, alpha, beta, gamma, delta, p and the initial values x(-2) , x(-1), y(-2), y(-1) are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.
Açıklama
Anahtar Kelimeler
Difference equations, solution in closed-form, forbidden set, asymptotic behaviour
Kaynak
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY
WoS Q DeÄŸeri
N/A
Scopus Q DeÄŸeri
Cilt
35
Sayı
1
Künye
Taskara, N., Tollu, D. T., Touafek, N., Yazlik, Y. (2020). A Solvable System of Difference Equations. Communications of the Korean Mathematical Society, 35(1), 301-319.