NEW SUMS IDENTITIES IN WEIGHTED CATALAN TRIANGLE WITH THE POWERS OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
Küçük Resim Yok
Tarih
2014
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
CHARLES BABBAGE RES CTR
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we consider a generalized Catalan triangle defined by k(m)/n(2n n - k) for positive integer m. Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form Sigma(n)(k=0) (2n n + k) k(m)/nX(tk)(r), where X-n either generalized Fibonacci or Lucas numbers, t and r are integers for 1 <= m <= 6. After we describe a general methodology to show how to compute the sums for further values of m.
Açıklama
Anahtar Kelimeler
Catalan triangle, sums identites, partial binomial sum, recursions
Kaynak
ARS COMBINATORIA
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
115