NEW SUMS IDENTITIES IN WEIGHTED CATALAN TRIANGLE WITH THE POWERS OF GENERALIZED FIBONACCI AND LUCAS NUMBERS

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

CHARLES BABBAGE RES CTR

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we consider a generalized Catalan triangle defined by k(m)/n(2n n - k) for positive integer m. Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form Sigma(n)(k=0) (2n n + k) k(m)/nX(tk)(r), where X-n either generalized Fibonacci or Lucas numbers, t and r are integers for 1 <= m <= 6. After we describe a general methodology to show how to compute the sums for further values of m.

Açıklama

Anahtar Kelimeler

Catalan triangle, sums identites, partial binomial sum, recursions

Kaynak

ARS COMBINATORIA

WoS Q Değeri

Q4

Scopus Q Değeri

Q4

Cilt

115

Sayı

Künye