HIC-net: A deep convolutional neural network model for classification of histopathological breast images
dc.contributor.author | Öztürk, Şaban | |
dc.contributor.author | Akdemir, Bayram | |
dc.date.accessioned | 2020-03-26T20:14:30Z | |
dc.date.available | 2020-03-26T20:14:30Z | |
dc.date.issued | 2019 | |
dc.department | Selçuk Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | In this study, a convolutional neural network (CNN) model is presented to automatically identify cancerous areas on whole-slide histopathological images (WSI). The proposed WSI classification network (HIC-net) architecture performs window-based classification by dividing the WSI into a certain plane. In our method, an effective pre-processing step has been added for WSI for better predictability of image parts and faster training. A large dataset containing 30,656 images is used for the evaluation of the HIC-net algorithm. Of these images, 23,040 are used for training, 2560 are used for validation and 5056 are used for testing. HIC-net has more successful results than other state-of-art CNN algorithms with AUC score of 97.7%. If we evaluate the classification results of HIC-net using softmax function, HIC-net success rates have 96.71% sensitivity, 95.7% specificity, 96.21% accuracy, and are more successful than other state-of-the-art techniques which are used in cancer research. (C) 2019 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) | en_US |
dc.description.sponsorship | This study was funded by TUBITAK. | en_US |
dc.identifier.citation | Öztürk, Ş., Akdemir, B. (2019). HIC-net: A Deep Convolutional Neural Network Model for Classification of Histopathological Breast Images. Computers and Electrical Engineering, 76, 299-310. | |
dc.identifier.doi | 10.1016/j.compeleceng.2019.04.012 | en_US |
dc.identifier.endpage | 310 | en_US |
dc.identifier.issn | 0045-7906 | en_US |
dc.identifier.issn | 1879-0755 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 299 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.compeleceng.2019.04.012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/37888 | |
dc.identifier.volume | 76 | en_US |
dc.identifier.wos | WOS:000470954900024 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Akdemir, Bayram. | |
dc.language.iso | en | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.ispartof | COMPUTERS & ELECTRICAL ENGINEERING | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Cancer classification | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | CNN | en_US |
dc.subject | Histopathological image | en_US |
dc.subject | Whole-slide | en_US |
dc.title | HIC-net: A deep convolutional neural network model for classification of histopathological breast images | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Şaban ÖZTÜRK.pdf
- Boyut:
- 2.57 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Full Text Access