BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS
dc.contributor.author | Kajla, Arun | |
dc.contributor.author | Acar, Tuncer | |
dc.date.accessioned | 2020-03-26T19:53:00Z | |
dc.date.available | 2020-03-26T19:53:00Z | |
dc.date.issued | 2018 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | In this article we construct a Durrmeyer modification of the operators introduced by Chen et al. in [10] based on a non-negative real parameter. We establish local approximation, global approximation, Voronovskaja type asymptotic theorem. The rate of convergence for differentiable functions whose derivatives are of bounded variation is also obtained. | en_US |
dc.identifier.doi | 10.18514/MMN.2018.2216 | en_US |
dc.identifier.endpage | 336 | en_US |
dc.identifier.issn | 1787-2405 | en_US |
dc.identifier.issn | 1787-2413 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 319 | en_US |
dc.identifier.uri | https://dx.doi.org/10.18514/MMN.2018.2216 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/36369 | |
dc.identifier.volume | 19 | en_US |
dc.identifier.wos | WOS:000441460300025 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | UNIV MISKOLC INST MATH | en_US |
dc.relation.ispartof | MISKOLC MATHEMATICAL NOTES | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | local approximation | en_US |
dc.subject | global approximation | en_US |
dc.subject | asymptotic formula | en_US |
dc.subject | bounded variation | en_US |
dc.title | BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS | en_US |
dc.type | Article | en_US |