Breast cancer diagnosis using least square support vector machine

dc.contributor.authorPolat, Kemal
dc.contributor.authorGuenes, Salih
dc.date.accessioned2020-03-26T17:17:04Z
dc.date.available2020-03-26T17:17:04Z
dc.date.issued2007
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractThe use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. In this paper, breast cancer diagnosis was conducted using least square support vector machine (LS-SVM) classifier algorithm. The robustness of the LS-SVM is examined using classification accuracy, analysis of sensitivity and specificity, k-fold cross-validation method and confusion matrix. The obtained classification accuracy is 98.53% and it is very promising compared to the previously reported classification techniques. Consequently, by LS-SVM, the obtained results show that the used method can make an effective interpretation and point out the ability of design of a new intelligent assistance diagnosis system. (c) 2006 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.dsp.2006.10.008en_US
dc.identifier.endpage701en_US
dc.identifier.issn1051-2004en_US
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage694en_US
dc.identifier.urihttps://dx.doi.org/10.1016/j.dsp.2006.10.008
dc.identifier.urihttps://hdl.handle.net/20.500.12395/21250
dc.identifier.volume17en_US
dc.identifier.wosWOS:000247899300002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen_US
dc.relation.ispartofDIGITAL SIGNAL PROCESSINGen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectbreast cancer diagnosisen_US
dc.subjectWisconsin breast cancer diagnosis dataen_US
dc.subjectleast square support vector machineen_US
dc.subjectconfusion matrixen_US
dc.subjectk-fold cross validationen_US
dc.subjectmedical diagnosisen_US
dc.titleBreast cancer diagnosis using least square support vector machineen_US
dc.typeArticleen_US

Dosyalar