The multiplicative Zagreb indices of graph operations
Küçük Resim Yok
Tarih
2013
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER INTERNATIONAL PUBLISHING AG
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Recently, Todeschini et al. (Novel Molecular Structure Descriptors - Theory and Applications I, pp. 73-100, 2010), Todeschini and Consonni (MATCH Commun. Math. Comput. Chem. 64:359-372, 2010) have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as follows: Pi(1) = Pi(1)(G) = Pi(v is an element of V(G)) d(G)(V)(2), Pi(2) = Pi(2)(G) = Pi(uv is an element of E(G)) d(G)(u)d(G)(V). These two graph invariants are called multiplicative Zagreb indices by Gutman (Bull. Soc. Math. Banja Luka 18:17-23, 2011). In this paper the upper bounds on the multiplicative Zagreb indices of the join, Cartesian product, corona product, composition and disjunction of graphs are derived and the indices are evaluated for some well-known graphs. MSC: 05C05, 05C90, 05C07.
Açıklama
Anahtar Kelimeler
graph, multiplicative Zagreb index, graph operations
Kaynak
JOURNAL OF INEQUALITIES AND APPLICATIONS
WoS Q Değeri
Q2
Scopus Q Değeri
Q2