Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform

Küçük Resim Yok

Tarih

2007

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

ELSEVIER SCIENCE INC

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The aim of this study is to detect epileptic seizure in EEG signals using a hybrid system based on decision tree classifier and fast Fourier transform (FFT). The present study proposes a hybrid system with two stages: feature extraction using FFT and decision making using decision tree classifier. The detection of epileptiform, discharges in the electroencephalogram (EEG) is an important part in the diagnosis of epilepsy. All data set were obtained from EEG signals of healthy subjects and subjects suffering from epilepsy diseases. For healthy subjects is background EEG (scalp) with open eyes and for epileptic patients correspond to a seizure recorded in hippocampus (epileptic focus) with depth electrodes. The evolution of proposed system was conducted using k-fold cross-validation, classification accuracy, and sensitivity and specificity values. We have obtained 98.68% and 98.72% classification accuracies using 5- and 10-fold cross-validation. The stated results show that the proposed method could point out the ability of design of a new intelligent assistance diagnosis system. (C) 2006 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

electroencephalogram (EEG), epileptic seizure, FFT, decision tree classifier, k-Fold cross-validation

Kaynak

APPLIED MATHEMATICS AND COMPUTATION

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

187

Sayı

2

Künye