Sakarya Havzası aylık yağışlarının otoregresif modellemesi

dc.contributor.authorBüyükyıldız, Meral
dc.contributor.authorBerktay, Ali
dc.date.accessioned2020-03-26T17:02:43Z
dc.date.available2020-03-26T17:02:43Z
dc.date.issued2006
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractBu çalışmada, geleceğe yönelik tahminler yapabilmek amacıyla Türkiye'nin önemli büyük havzalarından biri olan Sakarya Havzası'na ait aylık yağışların periyodik otoregresif modelleri (PAR) belirlenmiş ve belirlenen model tiplerine ait matematiksel ifadeler elde edilmiştir. Optimum modeller Akaike Bilgi Kriteri (AIC) değerlerine göre seçilmiştir. Her ne kadar AIC'de parametreler "en büyük olabilirlik yöntemi" ne göre hesaplanıyorsa da, bu çalışmada, "momentler yöntemi" kullanılmış; anılan her iki parametre tahmin yönteminin vereceği sonuçların karşılaştırılması diğer bir çalışma kapsamında düşünülmüştür. Seçilen modellerin uygunluk testleri Port Manteau testi ile artık serilerin bağımsızlığı kontrol edilerek yapılmıştır. Her istasyon için seçilen modeller kullanılarak tarihi serilerle aynı uzunluğa sahip 50'şer adet sentetik seri üretilmiş ve bu sentetik serilerle tarihi serilerin istatistiksel karakteristikleri (ortalama, standart sapma, korelasyon) karşılaştırılmıştır. 25 istasyona ait aylık yağışların periyodik otoregresif modellerinin belirlenmesi sonucunda PAR(0), PAR(l), PAR(2) ve PAR(3) olmak üzere 4 farklı PAR modeli elde edilmiştir.en_US
dc.description.abstractIn this study, periodic autoregressive models were established to predict future behaviour of monthly rainfall data of Sakarya Basin which is one of the big and important basin in Turkey. Mathematical equations of the Periodic Autoregressive Models (PAR) were also determined. Optimum models were selected based on Akaike Information Criterion (AIC). Although the parameters are calculated according to "maximum probability method" in AIC, "moments method" was used in this study; the comparison of the results of both mentioned parameter estimation methods was thought to be considered in another study's scope. The Port Manteau lack of fit test for the selected models have indicated that residuals are white noise. By using the selected models for the stations, 50 set of synthetic series which have the same length with the historical series for the monthly average rainfalls have been generated, and statistical characteristics (mean, standard deviation, autocorrelation structure) of these synthetic series have been compared with statistical characteristics of historical series. By determining the stochastic models of monthly average rainfall of 25 stations, 4 different PAR models were obtained, namely as PAR(0), PAR(l), PAR(2) and PAR(3).en_US
dc.identifier.citationBüyükyıldız, M., Berktay, A. (2006). Sakarya Havzası aylık yağışlarının otoregresif modellemesi. Mühendislik Bilimleri Dergisi, 12(1), 117-126.
dc.identifier.endpage126en_US
dc.identifier.issn1300-7009en_US
dc.identifier.issue1en_US
dc.identifier.startpage117en_US
dc.identifier.urihttp://www.trdizin.gov.tr/publication/paper/detail/TlRRME9USXk=
dc.identifier.urihttps://hdl.handle.net/20.500.12395/20152
dc.identifier.volume12en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isotren_US
dc.relation.ispartofMühendislik Bilimleri Dergisien_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleSakarya Havzası aylık yağışlarının otoregresif modellemesien_US
dc.title.alternativeAutoregressive modelling of monthly rainfall in Sakarya Basinen_US
dc.typeOtheren_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6..pdf
Boyut:
172.09 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası