On the m-extension of the Fibonacci and Lucas p-numbers

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this article, we define the m-extension of the Fibonacci and Lucas p-numbers (p >= 0 is integer and m >= 0 is real number) from which, specifying p and in, classic Fibonacci and Lucas numbers (p = 1, m = 1), Pell and Pell-Lucas numbers (p = 1, m = 2), Fibonacci and Lucas p-numbers (m = 1), Fibonacci in-numbers (p = 1), Pell and Pell-Lucas p-numbers (m = 2) are obtained. Afterwards, we obtain the continuous functions for the m-extension of the Fibonacci and Lucas p-numbers using the generalized Binet formulas. Also we introduce in the article a new class of mathematical constants - the Golden (p,m)-Proportions, which are a wide generalization of the classical golden mean, the golden p-proportions and the golden m-proportions. The article is of fundamental interest for theoretical physics where Fibonacci numbers and the golden mean are used widely. (c) 2007 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Kaynak

CHAOS SOLITONS & FRACTALS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

40

Sayı

4

Künye