On Randic energy

dc.contributor.authorGutman, Ivan
dc.contributor.authorFurtula, Boris
dc.contributor.authorBozkurt, S. Burcu
dc.date.accessioned2020-03-26T18:51:50Z
dc.date.available2020-03-26T18:51:50Z
dc.date.issued2014
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractThe Randic matrix R = (r(ij)) of a graph G whose vertex vi has degree d(i) is defined by r(ij) = 1/root d(i)d(j) if the vertices v(i) and v(j) are adjacent and r(ij) = 0 otherwise. The Randic. energy RE is the sum of absolute values of the eigenvalues of R. RE coincides with the normalized Laplacian energy and the normalized signless-Laplacian energy. Several properties or R and RE are determined, including characterization of graphs with minimal RE. The structure of the graphs with maximal RE is conjectured. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipSerbian Ministry of Science and Education [174033]en_US
dc.description.sponsorshipB.F. thanks for support the Serbian Ministry of Science and Education, through grant no. 174033. S.B.B. thanks TUBITAK and the Office of Selcuk University Scientific Research Project (BAP).en_US
dc.identifier.doi10.1016/j.laa.2013.06.010en_US
dc.identifier.endpage57en_US
dc.identifier.issn0024-3795en_US
dc.identifier.issn1873-1856en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage50en_US
dc.identifier.urihttps://dx.doi.org/10.1016/j.laa.2013.06.010
dc.identifier.urihttps://hdl.handle.net/20.500.12395/31035
dc.identifier.volume442en_US
dc.identifier.wosWOS:000329143500004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE INCen_US
dc.relation.ispartofLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectGraph spectrumen_US
dc.subjectGraph energyen_US
dc.subjectRandic matrixen_US
dc.subjectRandic energyen_US
dc.subjectNormalized Laplacian matrixen_US
dc.subjectNormalized signless Laplacian matrixen_US
dc.subjectNormalized Laplacian energyen_US
dc.titleOn Randic energyen_US
dc.typeArticleen_US

Dosyalar