Internal flow analysis of a porous burner via CFD
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
EMERALD GROUP PUBLISHING LTD
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Purpose This study aims to introduce a metal porous burner design. Literature is surveyed in a comprehensive manner to relate the current design with ongoing research. A demonstrative computational fluid dynamics (CFD) analysis is presented with projected flow conditions by means of a common commercial CFD code and turbulence model to show the flow-related features of the proposed burner. The porous metal burner has a novel design, and it is not commercially available. Design/methodology/approach Based on the field experience about porous burners, a metal, cylindrical, two-staged, homogenous porous burner was designed. Literature was surveyed to lay out research aspects for the porous burners and porous media. Three dimensional solid computer model of the burner was created. The flow domain was extracted from the solid model to use in CFD analysis. A commercial computational fluid dynamics code was utilized to analyze the flow domain. Projected flow conditions for the burner were applied to the CFD code. Results were evaluated in terms of homogenous flow distribution at the outer surface and flow mixing. Quantitative results are gathered and are presented in the present report by means of contour maps. Findings There aren't any flow sourced anomalies in the flow domain which would cause an inefficient combustion for the application. An accumulation of gas is evident around the top flange of the burner leading to higher static pressure. Generally, very low pressure drop throughout the proposed burner geometry is found which is regarded as an advantage for burners. About 0.63 Pa static pressure increase is realized on the flange surface due to the accumulation of the gas. The passage between inner and outer volumes has a high impact on the total pressure and leads to about 0.5 Pa pressure drop. About 0.03 J/kg turbulent kinetic energy can be viewed as the highest amount. Together with the increase in total enthalpy, total amount of energy drawn from the flow is 0.05 J/kg. More than half of it spent through turbulence and remaining is dissipated as heat. Outflow from burner surface can be regarded homogenous though the top part has slightly higher outflow. This can be changed by gradually increasing pore sizes toward inlet direction. Originality/value Conducted analysis is for a novel burner design. There are opportunities both for scientific and commercial fields.
Açıklama
Anahtar Kelimeler
CFD, Burner, Porous metal matrix, Pressure drop
Kaynak
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
29
Sayı
8
Künye
Abdulkarim, A. H., Ates, A., Altinisik, K., Canli, E. (2019). Internal Flow Analysis af a Porous Burner via CFD. International Journal of Numerical Methods for Heat & Fluid Flow, 29(8), 2666-2683.