Multi-Class F-Score Feature Selection Approach to Classification of Obstructive Sleep Apnea Syndrome
dc.contributor.author | Güneş, Salih | |
dc.contributor.author | Polat, Kemal | |
dc.contributor.author | Yosunkaya, Şebnem | |
dc.date.accessioned | 2020-03-26T18:04:42Z | |
dc.date.available | 2020-03-26T18:04:42Z | |
dc.date.issued | 2010 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | In this paper, a new feature selection named as multi-class f-score feature selection is proposed for sleep apnea classification having different disorder degrees (mild OSAS, moderate OSAS, serious OSAS, and non-OSAS). f-Score is used to measure the discriminating power of features in the classification of two-class pattern recognition problems. In order to apply the f-score feature selection to multi-class datasets, we have used the f-score feature selection as pairwise (in the form of two classes) in the diagnosis of obstructive sleep apnea syndrome (OSAS) with four classes. After feature selection process, MLPANN (Multi-layer perceptron artificial neural network) classifier is used to diagnose the OSAS having different disorder degrees. While MLPANN obtained 63.41% classification accuracy on the diagnosis of OSAS, the combination of MLPANN and multi-class f-score feature selection achieved 84.14% classification accuracy using 50-50% training-testing split of OSAS dataset with four classes. These results demonstrate that the proposed multi-class f-score feature selection method is effective and robust in determining the disorder degrees of OSAS. | en_US |
dc.description.sponsorship | The Scientific of Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [108E033]; Selcuk UniversitySelcuk University | en_US |
dc.description.sponsorship | This study was Supported by The Scientific of Technological Research Council of Turkey (TUBITAK) (Project number: 108E033) and also by the Scientific Research Projects of Selcuk University. | en_US |
dc.identifier.citation | Güneş, S., Polat, K., Yosunkaya, Ş., (2010). Multi-Class F-Score Feature Selection Approach to Classification of Obstructive Sleep Apnea Syndrome. Expert Systems with Applications, 37(2), 998-1004. DOI: 10.1016/j.eswa.2009.05.075 | |
dc.identifier.doi | 10.1016/j.eswa.2009.05.075 | en_US |
dc.identifier.endpage | 1004 | en_US |
dc.identifier.issn | 0957-4174 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 998 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.eswa.2009.05.075 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/25088 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000272432300012 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Güneş, Salih | |
dc.institutionauthor | Polat, Kemal | |
dc.institutionauthor | Yosunkaya, Şebnem | |
dc.language.iso | en | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Obstructive Sleep Apnea Syndrome (OSAS) | en_US |
dc.subject | Multi-Class F-Score Feature Selection | en_US |
dc.subject | Multi-Layer Perceptron Artificial Neural Network | en_US |
dc.subject | Polysomnography | en_US |
dc.title | Multi-Class F-Score Feature Selection Approach to Classification of Obstructive Sleep Apnea Syndrome | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 5088.pdf
- Boyut:
- 478.99 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası