Prediction of cutting forces and surface roughness using artificial neural network (ANN) and support vector regression (SVR) in turning 4140 steel
dc.contributor.author | Asilturk, I. | |
dc.contributor.author | Kahramanli, H. | |
dc.contributor.author | El Mounayri, H. | |
dc.date.accessioned | 2020-03-26T18:31:05Z | |
dc.date.available | 2020-03-26T18:31:05Z | |
dc.date.issued | 2012 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | In the present study, the prediction of cutting forces and surface roughness was carried out using neural networks and support vector regression (SVR) with six inputs, namely, three axis vibrations of the tool holder and cutting speed, feedrate and depth of cut. The data obtained by experimentation are used to construct predictive models. A feedforward backpropagation neural network and SVR have been selected for modelling. The coefficient of determination (R-2), mean absolute prediction error and root mean square error were calculated for each method, and these values served as a measure of prediction precision. We carried out comparison of the prediction accuracy of artificial neural networks and SVR. Comparison of the two models indicates that both models have successful performance. Experimental results are provided to confirm the effectiveness of this approach. | en_US |
dc.description.sponsorship | Selcuk UniversitySelcuk University; IUPUI; TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) | en_US |
dc.description.sponsorship | The present study was supported by Scientific Research Projects Coordinators (BAP) of Selcuk University, IUPUI and TUBITAK. | en_US |
dc.identifier.doi | 10.1179/1743284712Y.0000000043 | en_US |
dc.identifier.endpage | 986 | en_US |
dc.identifier.issn | 0267-0836 | en_US |
dc.identifier.issn | 1743-2847 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 980 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1179/1743284712Y.0000000043 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/28322 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wos | WOS:000306070400014 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | TAYLOR & FRANCIS LTD | en_US |
dc.relation.ispartof | MATERIALS SCIENCE AND TECHNOLOGY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Neural network | en_US |
dc.subject | CNC turning | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | SVR prediction model | en_US |
dc.title | Prediction of cutting forces and surface roughness using artificial neural network (ANN) and support vector regression (SVR) in turning 4140 steel | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 28322.pdf
- Boyut:
- 336.86 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası