Flower pollination-feedforward neural network for load flow forecasting in smart distribution grid
dc.contributor.author | Shehu, Gaddafi Sani. | |
dc.contributor.author | Çetinkaya, Nurettin. | |
dc.date.accessioned | 2020-03-26T20:14:20Z | |
dc.date.available | 2020-03-26T20:14:20Z | |
dc.date.issued | 2019 | |
dc.department | Selçuk Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Nature-inspired population-based metaheuristic flower pollination algorithm is proposed in solving load flow forecasting problem in smart distribution grid environment. The efficient approach involves training a feedforward neural network (FNN) with a new flower pollination algorithm (FPA). The idea is to perform short-term load flow forecasting in smart distribution network, thus maintaining system security due to intermittency of renewable energy penetration and power flow demand. Application of optimization algorithms such as FPA in training neural network improves accuracy, overcomes generalization ability of neural network, requires less data and prevents premature convergence problem in artificial intelligence solutions due to nonlinearity of parameters. The real load flow data are collected through distribution management system of Konya Organized Industrial Zone. The result obtained indicates strong improvement in error reduction using flower pollination optimization algorithm in training FNN for short-term load flow forecasting in smart distribution grid; the model is compared against FNN model and efficient support vector regression. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) | en_US |
dc.description.sponsorship | The authors acknowledge the effort of Konya Organized Industrial Zone Directorate for providing access to system data, and support of Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
dc.identifier.citation | Shehu, G. S., Çetinkaya, N. (2019). Flower Pollination–Feedforward Neural Network for Load Flow Forecasting in Smart Distribution Grid. Neural Computing and Applications, 31(10), 6001-6012. | |
dc.identifier.doi | 10.1007/s00521-018-3421-5 | en_US |
dc.identifier.endpage | 6012 | en_US |
dc.identifier.issn | 0941-0643 | en_US |
dc.identifier.issn | 1433-3058 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 6001 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1007/s00521-018-3421-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/37862 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000491131700022 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Shehu, Gaddafi Sani. | |
dc.institutionauthor | Çetinkaya, Nurettin. | |
dc.language.iso | en | en_US |
dc.publisher | SPRINGER LONDON LTD | en_US |
dc.relation.ispartof | NEURAL COMPUTING & APPLICATIONS | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Flower pollination algorithm | en_US |
dc.subject | Feedforward neural network | en_US |
dc.subject | Load flow forecasting | en_US |
dc.subject | Smart distribution grid | en_US |
dc.title | Flower pollination-feedforward neural network for load flow forecasting in smart distribution grid | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Gaddafi Sani SHEHU.pdf
- Boyut:
- 1.34 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Full Text Access