New Bounds on the Incidence Energy, Randic Energy and Randic Estrada Index

dc.contributor.authorMaden, A. Dilek
dc.date.accessioned2020-03-26T19:06:26Z
dc.date.available2020-03-26T19:06:26Z
dc.date.issued2015
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractFor a simple graph G and a real number alpha (not equal 0,1) the graph invariant s(alpha) is equal to the sum of powers of signless Laplacian eigenvalues of G. In this paper, we present some new bounds on s(alpha) of graphs and improve some results which was obtained on bipartite graphs. As a result of these bounds, we also obtain the some improved results on incidence energy. In addition, we study on Randic energy (RE) and Randic Estrada index (REE) of (bipartite) graphs.en_US
dc.description.sponsorshipTUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); Scientific Research Project Office (BAP) of Selcuk UniversitySelcuk Universityen_US
dc.description.sponsorshipThe author are partially supported by TUBITAK and the Scientific Research Project Office (BAP) of Selcuk University.en_US
dc.identifier.endpage387en_US
dc.identifier.issn0340-6253en_US
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage367en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/32358
dc.identifier.volume74en_US
dc.identifier.wosWOS:000361847100012en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUNIV KRAGUJEVAC, FAC SCIENCEen_US
dc.relation.ispartofMATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleNew Bounds on the Incidence Energy, Randic Energy and Randic Estrada Indexen_US
dc.typeArticleen_US

Dosyalar