On the signless Laplacian spectral radius of digraphs

dc.contributor.authorBozkurt, S. Burcu
dc.contributor.authorBozkurt, Durmus
dc.date.accessioned2020-03-26T18:42:45Z
dc.date.available2020-03-26T18:42:45Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractLet G = (V, E) be a digraph with n vertices and m arcs without loops and multiarcs, V = {v(1), v(2), ... , v(n)}. Denote the outdegree and average 2-outdegree of the vertex v(i) by d(i)(+) and m(i)(+), respectively. Let A (G) be the adjacency matrix and D (G) = diag (d(1)(+), d(2)(+), ... , d(n)(+)) be the diagonal matrix with outdegree of the vertices of the digraph G. Then we call Q (G) = D (G) + A (G) signless Laplacian matrix of G. In this paper, we obtain some upper and lower bounds for the spectral radius of Q (G) which is called signless Laplacian spectral radius of G. We also show that some bounds involving outdegrees and the average 2-outdegrees of the vertices of G can be obtained from our bounds.en_US
dc.identifier.endpage200en_US
dc.identifier.issn0381-7032en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage193en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/29701
dc.identifier.volume108en_US
dc.identifier.wosWOS:000314320100016en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherCHARLES BABBAGE RES CTRen_US
dc.relation.ispartofARS COMBINATORIAen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleOn the signless Laplacian spectral radius of digraphsen_US
dc.typeArticleen_US

Dosyalar