On the signless Laplacian spectral radius of digraphs
dc.contributor.author | Bozkurt, S. Burcu | |
dc.contributor.author | Bozkurt, Durmus | |
dc.date.accessioned | 2020-03-26T18:42:45Z | |
dc.date.available | 2020-03-26T18:42:45Z | |
dc.date.issued | 2013 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | Let G = (V, E) be a digraph with n vertices and m arcs without loops and multiarcs, V = {v(1), v(2), ... , v(n)}. Denote the outdegree and average 2-outdegree of the vertex v(i) by d(i)(+) and m(i)(+), respectively. Let A (G) be the adjacency matrix and D (G) = diag (d(1)(+), d(2)(+), ... , d(n)(+)) be the diagonal matrix with outdegree of the vertices of the digraph G. Then we call Q (G) = D (G) + A (G) signless Laplacian matrix of G. In this paper, we obtain some upper and lower bounds for the spectral radius of Q (G) which is called signless Laplacian spectral radius of G. We also show that some bounds involving outdegrees and the average 2-outdegrees of the vertices of G can be obtained from our bounds. | en_US |
dc.identifier.endpage | 200 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 193 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/29701 | |
dc.identifier.volume | 108 | en_US |
dc.identifier.wos | WOS:000314320100016 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | CHARLES BABBAGE RES CTR | en_US |
dc.relation.ispartof | ARS COMBINATORIA | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.title | On the signless Laplacian spectral radius of digraphs | en_US |
dc.type | Article | en_US |