Lineer fark denklem sistemlerinin kararlı hale getirilmesi için bir algoritma

Yükleniyor...
Küçük Resim

Tarih

2007-10-28

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu tezde, literatürde m noktadan kontrol sistemi olarak adlandırılan x(n +1) = Ax(n) + Bu(n), n = 0,1,2,... fark denklem sistemi için n ? ? , || x(n) ||? 0 şartını sağlayan bir u(n) = Kx(n),n = 0,1,2,... kontrol dizisinde K matrisini varlığını araştıran varsa bu K matrisini hesaplayan bir algoritma verilmiştir. Burada A, N boyutlu, karesel, reel bir ? * - regüler matris; B, N satır m sütunlu reel bir matris; (A, B) ? - kontrol edilebilir bir çift ve {x(n)},n = 0,1,2,... N boyutlu bir sütun vektör dizisidir. Bu doğrultuda, Sima 1981'de verilmiş olan algoritma esas alınarak bu algoritmanın adımlarına yeni yaklaşımlar getirilmiştir. Ayrıca kontrol edilebilirlik ile kararlılık arasındaki ilişki verilmiştir. Bir matrisin ? * - regüler matris olup olmadığını araştıran bir algoritma ile verilen (A, B) çiftinin ? - kontrol edilebilir olup olmadığını araştıran bir algoritma verilmiştir.
In this thesis, the existence of a matrix K in the control sequence u(n) = Kx(n),n = 0,1,2,... and if exists, an algorithm for its calculation have been investigated, which appears in the system of difference equations x(n +1) = Ax(n) + Bu(n), n = 0,1,2,... known as the control system from m-points, subject to condition || x(n) ||? 0 as n ? ? where A is a real ? * - reguler square matrix of order N; B is a Nxm real matrix; (A, B) is a ? -controllable pair, and {x(n)},n = 0,1,2,... denotes a sequence of columns vektors. In this regard, based on the algorithm presented by Sima (1981) new approaches were introduced. In addition, the relation between controlability and stability have been given. An algorithm which investigates whether ? * -reguler matrix or not and algorithm which investigates whether the pair of (A, B) is ? -controllable or not have given.

Açıklama

Anahtar Kelimeler

Lineer fark denklem sistemleri, Linear difference equation system, Kararlılık, Stability, Kontrol sistemi, Control system, Stabilization, Kararlı hale getirilebilirlik

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Bozkurt, A. (2007). Lineer fark denklem sistemlerinin kararlı hale getirilmesi için bir algoritma. Selçuk Üniversitesi, Yayımlanmış doktora tezi, Konya.