Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, diagnosis of lung cancer, which is a very common and important disease, was conducted with computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system. The approach system has two stages. In the first stage, dimension of lung cancer dataset that has 57 features is reduced to 4 features using principal component analysis. In the second stage, artificial immune recognition system (AIRS) was our used classifier. We took the lung cancer dataset used in our study from the UCI (from University of California, Department of Information and Computer Science) Machine Learning Database. The obtained classification accuracy of our system was 100% and it was very promising with regard to the other classification applications in literature for this problem. (c) 2006 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

lung cancer, principal component analysis (PCA), artificial immune system, AIRS, medical diagnosis

Kaynak

EXPERT SYSTEMS WITH APPLICATIONS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

34

Sayı

1

Künye