Classification Rule Mining Approach Based on Multiobjective Optimization

dc.contributor.authorSag, Tahir
dc.contributor.authorKahramanli, Humar
dc.date.accessioned2020-03-26T19:34:20Z
dc.date.available2020-03-26T19:34:20Z
dc.date.issued2017
dc.departmentSelçuk Üniversitesien_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEYen_US
dc.description.abstractIn this paper, a novel approach for classification rule mining is presented. The remarkable relationship between the rule extraction procedure and the concept of multiobjective optimization is emphasized. The range values of features composing the rules are handled as decision variables in the modelled multiobjective optimization problem. The proposed method is applied to three well-known datasets in literature. These are Iris, Haberman's Survival Data and Pima Indians Diabetes Datasets obtained from machine learning repository of University of California at Irvine (UCI). The classification rules are extracted with 100% accuracy for all datasets. These experimental results are the best outcomes found in literature so far.en_US
dc.description.sponsorshipIEEE Turkey Sect, Anatolian Scien_US
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/34881
dc.identifier.wosWOS:000426868700104en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectRule extractionen_US
dc.subjectmultiobjective optimizationen_US
dc.subjectgenetic algorithmsen_US
dc.titleClassification Rule Mining Approach Based on Multiobjective Optimizationen_US
dc.typeConference Objecten_US

Dosyalar