hGA: Hybrid Genetic Algorithm in Fuzzy Rule-based Classification Systems for High-dimensional Problems
dc.contributor.author | Kizilkaya Aydogan, Emel | |
dc.contributor.author | Karaoglan, Ismail | |
dc.contributor.author | Pardalos, Panos M. | |
dc.date.accessioned | 2020-03-26T18:30:40Z | |
dc.date.available | 2020-03-26T18:30:40Z | |
dc.date.issued | 2012 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | The aim of this work is to propose a hybrid heuristic approach (called hGA) based on genetic algorithm (GA) and integer-programming formulation (IPF) to solve high dimensional classification problems in linguistic fuzzy rule-based classification systems. In this algorithm, each chromosome represents a rule for specified class, GA is used for producing several rules for each class, and finally IPF is used for selection of rules from a pool of rules, which are obtained by GA. The proposed algorithm is experimentally evaluated by the use of non-parametric statistical tests on seventeen classification benchmark data sets. Results of the comparative study show that hGA is able to discover accurate and concise classification rules. Published by Elsevier B.V. | en_US |
dc.description.sponsorship | LATNA Laboratory, National Research University Higher School of Economics, RF government [ag. 11.G34.31.0057] | en_US |
dc.description.sponsorship | Partially supported by LATNA Laboratory, National Research University Higher School of Economics, RF government grant, ag. 11.G34.31.0057. | en_US |
dc.identifier.citation | Kızılkaya Aydogan, E., Karaoglan, I., Pardalos, P. M., (2012). hGA: Hybrid Genetic Algorithm in Fuzzy Rule-based Classification Systems for High-dimensional Problems. Applied Soft Computing. 12(2), 800-806. doi:10.1016/j.asoc.2011.10.010 | |
dc.identifier.doi | 10.1016/j.asoc.2011.10.010 | en_US |
dc.identifier.endpage | 806 | en_US |
dc.identifier.issn | 1568-4946 | en_US |
dc.identifier.issn | 1872-9681 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 800 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.asoc.2011.10.010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/28107 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000298631400021 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Karaoglan, Ismail | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Applied Soft Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Fuzzy rule based classification systems | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Genetic fuzzy systems | en_US |
dc.subject | Classification | en_US |
dc.subject | Integer programming | en_US |
dc.title | hGA: Hybrid Genetic Algorithm in Fuzzy Rule-based Classification Systems for High-dimensional Problems | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 28107.pdf
- Boyut:
- 379.22 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası