On the normalized Laplacian eigenvalues of graphs

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

CHARLES BABBAGE RES CTR

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let G = (V, E) be a simple connected graph with n vertices and m edges. Further let lambda(i)(L), i = 1, 2, ..., n, be the non-increasing eigenvalues of the normalized Laplacian matrix of the graph G. In this paper, we obtain the following result: For a connected graph G of order n, lambda(2)(L) = lambda(3)(L) = ... = lambda(n-1)(L) if and only if G is a complete graph K-n or G is a complete bipartite graph K-p,K- q. Moreover, we present lower and upper bounds for the normalized Laplacian spectral radius of a graph and characterize graphs for which the lower or upper bounds is attained.

Açıklama

Anahtar Kelimeler

Graph, normalized Laplacian eigenvalues, bound

Kaynak

ARS COMBINATORIA

WoS Q Değeri

Q4

Scopus Q Değeri

Q4

Cilt

118

Sayı

Künye