On the normalized Laplacian eigenvalues of graphs
Küçük Resim Yok
Tarih
2015
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
CHARLES BABBAGE RES CTR
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let G = (V, E) be a simple connected graph with n vertices and m edges. Further let lambda(i)(L), i = 1, 2, ..., n, be the non-increasing eigenvalues of the normalized Laplacian matrix of the graph G. In this paper, we obtain the following result: For a connected graph G of order n, lambda(2)(L) = lambda(3)(L) = ... = lambda(n-1)(L) if and only if G is a complete graph K-n or G is a complete bipartite graph K-p,K- q. Moreover, we present lower and upper bounds for the normalized Laplacian spectral radius of a graph and characterize graphs for which the lower or upper bounds is attained.
Açıklama
Anahtar Kelimeler
Graph, normalized Laplacian eigenvalues, bound
Kaynak
ARS COMBINATORIA
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
118