A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

ELSEVIER SCIENCE BV

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The Traveling Salesman Problem (TSP) is one of the standard test problems used in performance analysis of discrete optimization algorithms. The Ant Colony Optimization (ACO) algorithm appears among heuristic algorithms used for solving discrete optimization problems. In this study, a new hybrid method is proposed to optimize parameters that affect performance of the ACO algorithm using Particle Swarm Optimization (PSO). In addition, 3-Opt heuristic method is added to proposed method in order to improve local solutions. The PSO algorithm is used for detecting optimum values of parameters alpha and beta which are used for city selection operations in the ACO algorithm and determines significance of inter-city pheromone and distances. The 3-Opt algorithm is used for the purpose of improving city selection operations, which could not be improved due to falling in local minimums by the ACO algorithm. The performance of proposed hybrid method is investigated on ten different benchmark problems taken from literature and it is compared to the performance of some well-known algorithms. Experimental results show that the performance of proposed method by using fewer ants than the number of cities for the TSPs is better than the performance of compared methods in most cases in terms of solution quality and robustness. (C) 2015 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Particle Swarm Optimization, Ant Colony Optimization, 3-Opt algorithm, Traveling Salesman Problem

Kaynak

APPLIED SOFT COMPUTING

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

30

Sayı

Künye