LS-SVM method for fuzzy nonlinear regression

dc.contributor.authorTekşen, Ümran M.
dc.contributor.authorGenç, Aşır
dc.date.accessioned2018-05-09T07:25:52Z
dc.date.available2018-05-09T07:25:52Z
dc.date.issued2011
dc.descriptionURL: http://sjam.selcuk.edu.tr/sjam/article/view/290en_US
dc.description.abstractIn this study LS-SVM method is applied for fuzzy nonlinear regression whose input and output are fuzzy numbers. The method solves any problem of classification or regression via transforming to a quadratic problem without running into local solutions. This method is favourable owing to independent from a model. In this study, two practises are applied to linear and nonlinear data.en_US
dc.identifier.citationTekşen, Ü. M., Genç, A. (2011). LS-SVM method for fuzzy nonlinear regression. Selcuk Journal of Applied Mathematics, 53-60.en_US
dc.identifier.endpage60
dc.identifier.issn1302-7980en_US
dc.identifier.startpage53
dc.identifier.urihttps://hdl.handle.net/20.500.12395/10593
dc.language.isoenen_US
dc.publisherSelcuk University Research Center of Applied Mathematicsen_US
dc.relation.ispartofSelcuk Journal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectFuzzy nonlineer regressionen_US
dc.subjectLeast squares support vector machineen_US
dc.subjectBulanık doğrusal olmayan regresyonen_US
dc.subjectEn küçük kareler destek vektör makinesien_US
dc.titleLS-SVM method for fuzzy nonlinear regressionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Ümran M. Tekşen, Aşır Genç.pdf
Boyut:
131.24 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: