Some array polynomials over special monoid presentations

dc.contributor.authorCevik, Ahmet Sinan
dc.contributor.authorDas, Kinkar Chandra
dc.contributor.authorSimsek, Yilmaz
dc.contributor.authorCangul, Ismail Naci
dc.date.accessioned2020-03-26T18:43:25Z
dc.date.available2020-03-26T18:43:25Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn a recent joint paper (Cevik et al. in Hacet. J. Math. Stat., acceptted), the authors have investigated the p-Cockcroft property (or, equivalently, efficiency) for a presentation, say , of the semi-direct product of a free abelian monoid rank two by a finite cyclic monoid. Moreover, they have presented sufficient conditions on a special case for to be minimal whilst it is inefficient. In this paper, by considering these results, we first show that the presentations of the form can actually be represented by characteristic polynomials. After that, some connections between representative characteristic polynomials and generating functions in terms of array polynomials over the presentation will be pointed out. Through indicated connections, the existence of an equivalence among each generating function in itself is claimed studied in this paper. MSC: 11B68, 11S40, 12D10, 20M05, 20M50, 26C05, 26C10.en_US
dc.description.sponsorshipResearch Project Office of Selcuk UniversitySelcuk University [13701071]; Research Project Office of Uludag UniversityUludag University [2012-15, 2012-19]; Research Project Office of Akdeniz UniversityAkdeniz University; Sungkyunkwan University BK21 Project, BK21 Math Modeling HRD Div. Sungkyunkwan University, Suwon, Republic of Koreaen_US
dc.description.sponsorshipThe first, third and fourth authors are partially supported by Research Project Offices of Selcuk (13701071), Uludag (2012-15 and 2012-19) and Akdeniz Universities, respectively. Also the second author is supported by Sungkyunkwan University BK21 Project, BK21 Math Modeling HRD Div. Sungkyunkwan University, Suwon, Republic of Korea.en_US
dc.identifier.doi10.1186/1687-1812-2013-44en_US
dc.identifier.issn1687-1812en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://dx.doi.org/10.1186/1687-1812-2013-44
dc.identifier.urihttps://hdl.handle.net/20.500.12395/29827
dc.identifier.wosWOS:000318786200001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AGen_US
dc.relation.ispartofFIXED POINT THEORY AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectminimalityen_US
dc.subjectcharacteristic polynomialsen_US
dc.subjectarray polynomialsen_US
dc.titleSome array polynomials over special monoid presentationsen_US
dc.typeArticleen_US

Dosyalar