Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine

Küçük Resim Yok

Tarih

2007

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Changes in the normal rhythm of a human heart may result in different cardiac arrhythmias, which may be immediately fatal or cause irreparable damage to the heart sustained over long periods of time. The ability to automatically identify arrhythmias from ECG recordings is important for clinical diagnosis and treatment. In this study, we have detected on ECG Arrhythmias using principal component analysis (PCA) and least square support vector machine (LS-SVM). The approach system has two stages. In the first stage, dimension of ECG Arrhythmias dataset that has 279 features is reduced to 15 features using principal component analysis. In the second stage, diagnosis of ECG Arrhythmias was conducted by using LS-SVM classifier. We took the ECG Arrhythmias dataset used in our study from the UCI (from University of California, Department of Information and Computer Science) machine learning database. Classifier system consists of three stages: 50-50% of training-test dataset, 70-30% of training-test dataset and 80-20% of training-test dataset, subsequently, the obtained classification accuracies; 96.86%, 100% ve 100%. The end benefit would be to assist the physician to make the final decision without hesitation. This result is for ECG Arrhythmias disease but it states that this method can be used confidently for other medical diseases diagnosis problems, too. © 2006 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

ECG Arrhythmia, Least square support vector machine (LSSVM), Principal component analysis (PCA), ROC curves

Kaynak

Applied Mathematics and Computation

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

186

Sayı

1

Künye