WHEAT BIOFORTIFICATION - A POTENTIAL KEY TO HUMAN MALNUTRITION

dc.contributor.authorKhan, Mohd Kamran
dc.contributor.authorPandey, Anamika
dc.contributor.authorAkkaya, Mahinur S.
dc.contributor.authorGezgin, Sait
dc.contributor.authorHamurcu, Mehmet
dc.contributor.authorHakki, Erdogan E.
dc.date.accessioned2020-03-26T19:43:28Z
dc.date.available2020-03-26T19:43:28Z
dc.date.issued2017
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractWheat production is required to double by 2050 in order to facilitate the global food assurance. Along with the rise in wheat production, improvement of the nutrient value of wheat varieties is another crucial challenge faced by wheat breeders. It is well established that more than 40% people in the world are at a risk of malnutrition caused by the deficiency of Fe, Zn and protein in their food. Numerous strategies are adopted by scientists, breeders and food industries to combat the problem. In this context, biofortificaton has become a successful method for increasing, either genetically or agronomically, the micronutrient content in crop plants. Recently, substantial progress has been made in the use of molecular marker systems and quantitative trait loci (QTL) to augment the wheat iron, zinc and protein content. Determining the role of GPC-B1 gene in controlling the iron, zinc and protein content in wheat genotypes is a promising discoveries. Although the gene is found to be associated with an elevated micronutrient content, it is also responsible for a decrease in yield. In order to simultaneously achieve both high nutrient content and elevated yield, major efforts are required to reveal the genetic control of these traits. Moreover, identifying the wheat genomic resources with an elevated nutrient content can be crucial. Employment of the next generation sequencing methods and use of molecular markers in marker assisted selection appears to be a promising approach to attaining the objective of breeding nutrient rich varieties. Combining advanced molecular biology and plant breeding techniques for wheat development is a potential strategy in achieving a healthy, 'hidden hunger' free world.en_US
dc.identifier.doi10.5601/jelem.2016.21.4.1336en_US
dc.identifier.endpage944en_US
dc.identifier.issn1644-2296en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage937en_US
dc.identifier.urihttps://dx.doi.org/10.5601/jelem.2016.21.4.1336
dc.identifier.urihttps://hdl.handle.net/20.500.12395/35684
dc.identifier.volume22en_US
dc.identifier.wosWOS:000404270000007en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPOLISH SOCIETY MAGNESIUM RESEARCHen_US
dc.relation.ispartofJOURNAL OF ELEMENTOLOGYen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectbiofortificationen_US
dc.subjectgrain protein contenten_US
dc.subjectmalnutritionen_US
dc.subjectwheaten_US
dc.titleWHEAT BIOFORTIFICATION - A POTENTIAL KEY TO HUMAN MALNUTRITIONen_US
dc.typeReviewen_US

Dosyalar