Türkiye'de enerji talebini tahmin etmek için doğrusal form kullanarak GSA (Yerçekimi Arama Algoritması) ve IWO (Yabani Ot Optimizasyon Algoritması) tekniklerinin uygulanması

dc.contributor.authorKoç, İsmail
dc.contributor.authorNureddin, Refik
dc.contributor.authorKahramanlı, Humar
dc.date.accessioned2018-12-20T08:09:05Z
dc.date.accessioned2017-06-14
dc.date.available2018-12-20T08:09:05Z
dc.date.issued2018
dc.date.submitted2018-04-09
dc.descriptionDOI: 10.15317/Scitech.2018.150en_US
dc.description.abstractBu çalışma, Türkiye'deki ekonomik göstergelere dayalı enerji talep tahmini ile ilgilidir. Enerji talebini tahmin etmek için Yerçekimi Arama Algoritması (GSA) ve Yabani Ot Algoritması (IWO) tekniklerine dayanan iki farklı model önerilmektedir. GSA yöntemi, Newton’un hareket ve yerçekimi kanunlarından esinlenerek geliştirilmiş sezgisel optimizasyon algoritmasıdır. IWO algoritması ise doğadaki yabani otların istilacı karakterlerinden esinlenen, evrimsel bir optimizasyon algoritmasıdır. GSA ve IWO yöntemlerine dayalı enerji talep modelleri, gayri safi yurtiçi hâsıla (GSYİH), nüfus, ithalat ve ihracat verilerini giriş parametresi şeklinde kullanan bir model olarak önerilmektedir. Önerilen yöntemler doğrusal regresyon modeli kullanılarak geliştirilmiştir. Türkiye’nin gelecekteki enerji talebi ise üç farklı senaryo altında tahmin edilmektedir. Önerilen tahmin modellerinden elde edilen deneysel sonuçlar karşılaştırmalı olarak verilmiştir. 1979 ve 2005 yılları arasındaki veriler kullanılarak gerçekleştirilen tahmin modelinde IWO literatürdeki diğer yöntemlerle de kıyaslanmış ve IWO yöntemi en yüksek performansı verdiği görülmüştür. 1979 ve 2011 yılları arasındaki tüm veri seti kullanılarak gerçekleştirilen tahmin modelinde ise GSA, IWO yöntemiyle karşılaştırılmış ve GSA daha iyi bir performans elde etmiştir.en_US
dc.description.abstractThis paper deals with energy demand forecast based on economic indicators in Turkey. Two different models based on the Gravity Search Algorithm (GSA) and Invasive Weed Optimization Algorithm (IWO) techniques are proposed to estimate energy demand. GSA is heuristic optimization algorithm inspired by Newton's laws of motion and gravity. The IWO algorithm is an evolutionary optimization algorithm inspired by the invasive characters of weeds in the wild. Energy demand models based on GSA and IWO methods are proposed using gross domestic product (GDP), population, import and export data as input parameters. Proposed methods are developed using linear regression model. Turkey's future energy demand is estimated under three different scenarios. The experimental results obtained by prediction models are given comparatively. In the prediction model using data between 1979 and 2005, IWO is compared with other methods in the literature and IWO method shows the highest performance. However, in the forecasting model obtained using the entire data set between 1979 and 2011, GSA is compared with the IWO method and GSA achieves better performance than IWO.en_US
dc.identifier.citationKoç, İ., Nureddin, R., Kahramanlı, H. (2018). Türkiye'de enerji talebini tahmin etmek için doğrusal form kullanarak GSA (Yerçekimi Arama Algoritması) ve IWO (Yabani Ot Optimizasyon Algoritması) tekniklerinin uygulanması. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 6, (4), 529-543.en_US
dc.identifier.endpage543
dc.identifier.issn2147-9364en_US
dc.identifier.startpage529
dc.identifier.urihttps://hdl.handle.net/20.500.12395/14096
dc.identifier.volume6
dc.language.isotren_US
dc.publisherSelçuk Üniversitesi Mühendislik Fakültesien_US
dc.relation.ispartofSelçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisien_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectEnerji talebien_US
dc.subjectEnerji talep tahminien_US
dc.subjectOptimizasyonen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy demand forecastingen_US
dc.subjectOptimizationen_US
dc.subjectYerçekimi arama algoritmasıen_US
dc.subjectYabani ot algoritmasıen_US
dc.subjectGravity search algorithmen_US
dc.subjectInvasive weed optimization algorithmen_US
dc.titleTürkiye'de enerji talebini tahmin etmek için doğrusal form kullanarak GSA (Yerçekimi Arama Algoritması) ve IWO (Yabani Ot Optimizasyon Algoritması) tekniklerinin uygulanmasıen_US
dc.title.alternativeImplementation of GSA (Gravitation Search Algorithm) and IWO (Invasive Weed Optimization) for the prediction of the energy demand in Turkey using linear formen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale.pdf
Boyut:
974.29 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: