A Hybrid Wavelet and Neuro-Fuzzy Model for Forecasting the Monthly Streamflow Data

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Researchers have studied to forecast the streamflow in order to develop the water usage policy. They have used not only traditional methods, but also computer aided methods. Some black-box models, like Adaptive Neuro Fuzzy Inference Systems (ANFIS), became very popular for the hydrologic engineering, because of their rapidity and less variation requirements. Wavelet Transform has become a useful tool for the analysis of the variations in time series. In this study, a hybrid model, Wavelet-Neuro Fuzzy (WNF), has been used to forecast the streamflow data of 5 Flow Observation Stations (FOS), which belong to Sakarya Basin in Turkey. In order to evaluate the accuracy performance of the model, Auto Regressive Integrated Moving Average (ARIMA) model has been used with the same data sets. The comparison has been made by Root Mean Squared Errors (RMSE) of the models. Results showed that hybrid WNF model forecasts the streamflow more accurately than ARIMA model.

Açıklama

Anahtar Kelimeler

Streamflow modeling, Wavelet, Anfis, ARIMA

Kaynak

WATER RESOURCES MANAGEMENT

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

28

Sayı

2

Künye