Incomplete Tribonacci-Lucas Numbers and Polynomials

dc.contributor.authorYilmaz, Nazmiye
dc.contributor.authorTaskara, Necati
dc.date.accessioned2020-03-26T19:06:07Z
dc.date.available2020-03-26T19:06:07Z
dc.date.issued2015
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn this paper, we define Tribonacci-Lucas polynomials and present Tribonacci-Lucas numbers and polynomials as a binomial sum. Then, we introduce incomplete Tribonacci-Lucas numbers and polynomials. In addition we derive recurrence relations, some properties and generating functions of these numbers and polynomials. Also, we find the generating function of incomplete Tribonacci polynomials which is given as the open problem in [12].en_US
dc.identifier.doi10.1007/s00006-014-0523-8en_US
dc.identifier.endpage753en_US
dc.identifier.issn0188-7009en_US
dc.identifier.issn1661-4909en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage741en_US
dc.identifier.urihttps://dx.doi.org/10.1007/s00006-014-0523-8
dc.identifier.urihttps://hdl.handle.net/20.500.12395/32231
dc.identifier.volume25en_US
dc.identifier.wosWOS:000359814200016en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSPRINGER BASEL AGen_US
dc.relation.ispartofADVANCES IN APPLIED CLIFFORD ALGEBRASen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectBinomial sumsen_US
dc.subjectGenerating functionsen_US
dc.subjectIncomplete Tribonacci-Lucas numbersen_US
dc.subjectIncomplete Tribonacci-Lucas polynomialsen_US
dc.titleIncomplete Tribonacci-Lucas Numbers and Polynomialsen_US
dc.typeArticleen_US

Dosyalar