Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity

Küçük Resim Yok

Tarih

2008

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

AMER INST PHYSICS

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present work, the case of a spherical quantum dot with parabolic confinement subjected to an external electric field with the presence of an impurity, the linear and third-order nonlinear optical absorption coefficients as well as refractive index changes have been calculated. The numerical method we are using for the calculation of the energy levels and the corresponding wave functions is the potential morphing method in the effective mass approximation. As our results indicate an increase of the electric field and/or the position of the impurity and/or the quantum dot radius redshifts the peak positions of the total absorption coefficient and total refractive index changes. Additionally, an increase of the position of the impurity and/or the quantum dot radius decreases the total absorption coefficient and increases the total refractive index changes. An increase also of the electric field decreases the total absorption coefficient but does not significantly affect the peak values of the total refractive index changes. Finally, an increase of the optical intensity considerably changes the total absorption coefficient as well as the total refractive index changes. (C) 2008 American Institute of Physics.

Açıklama

Anahtar Kelimeler

Kaynak

JOURNAL OF APPLIED PHYSICS

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

103

Sayı

7

Künye