Some properties on the lexicographic product of graphs obtained by monogenic semigroups

dc.contributor.authorAkgüneş, Nihat
dc.contributor.authorDas, Kinkar C.
dc.contributor.authorÇevik, Ahmet Sinan
dc.contributor.authorCangül, İsmail Naci
dc.date.accessioned2020-03-26T18:43:26Z
dc.date.available2020-03-26T18:43:26Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Gamma (S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} was recently defined. The vertices are the non-zero elements x, x(2), x(3),..., x(n) and, for 1 <= i, j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma (S-M) were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over Gamma (S-M). In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs Gamma (S-M(1)) and Gamma (S-M(2)).en_US
dc.description.sponsorshipResearch Project Offices of Selcuk and Uludag universitiesSelcuk University; Sungkyunkwan University [BK21]en_US
dc.description.sponsorshipThe first, third and fourth authors are partially supported by Research Project Offices of Selcuk and Uludag universities. The second author is supported by the Faculty research Fund, Sungkyunkwan University, 2012 and Sungkyunkwan University BK21 Project, BK21 Math Modelling HRD Div. Sungkyunkwan University, Suwon, Republic of Korea.en_US
dc.identifier.doi10.1186/1029-242X-2013-238en_US
dc.identifier.issn1029-242Xen_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://dx.doi.org/10.1186/1029-242X-2013-238
dc.identifier.urihttps://hdl.handle.net/20.500.12395/29829
dc.identifier.wosWOS:000320668600002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AGen_US
dc.relation.ispartofJOURNAL OF INEQUALITIES AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectmonogenic semigroupen_US
dc.subjectlexicographic producten_US
dc.subjectclique numberen_US
dc.subjectchromatic numberen_US
dc.subjectindependence numberen_US
dc.subjectdomination numberen_US
dc.titleSome properties on the lexicographic product of graphs obtained by monogenic semigroupsen_US
dc.typeArticleen_US

Dosyalar