Application of fuzzy C-means clustering algorithm to spectral features for emotion classification from speech
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In the present study, emotion recognition from speech signals was performed by using the fuzzy C-means algorithm. Spectral features obtained from speech signals were used as features. The spectral features used were Mel frequency cepstral coefficients and linear prediction coefficients. Certain statistical features were extracted from the spectral features obtained in the study. After the selection of the extracted features, cluster centers were identified by using type-1 fuzzy C-means (FCM) algorithm and used as input to the classifier. Supervised classifiers such as ANN, NB, kNN, and SVM were used for classification. In the study, all seven emotions of the EmoDB database were used. Of the features obtained, FCM clustering was applied to Mel coefficients and obtained clusters centers were used as input for classification. The results showed that using FCM for preprocessing aim increased the success rate. The comparison of the classification methods showed that the maximum success rate was obtained as 92.86% using the SVM classifier.
Açıklama
Anahtar Kelimeler
Emotion recognition, MFCC, LPC, Fuzzy C-means
Kaynak
NEURAL COMPUTING & APPLICATIONS
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
29
Sayı
8