On the lower and upper bounds for the Euclidean norm of a complex matrix and its Applications
Küçük Resim Yok
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
CHARLES BABBAGE RES CTR
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, we obtained lower and upper bounds for the Euclidean norm of a complex matrix A of order n x n. In addition, we found lower and upper bounds for the spectral norms and Euclidean norms of Hilbert matrix, its Hadamard square root, Cauchy-Toeplitz and Cauchy-Hankel matrices in the forms H = (1/(i + j - 1))(i, j=1)(n), H degrees(1/2) = (1/(i + j - 1)(1/2))(i, j=1)(n), T-n = [1/(g + (i - j)h)](i, j=1)(n), and H-n = [1/(g + (i + j)h)](i,j=1)(n), respectively.
Açıklama
Anahtar Kelimeler
Hilbert matrix, Cauchy-Toeplitz matrix, Cauchy-Hankel matrix, Norm, Lower and Upper bounds
Kaynak
ARS COMBINATORIA
WoS Q Değeri
Q4
Scopus Q Değeri
Q4
Cilt
110