Comparison of some estimation methods in linear regression

dc.contributor.authorGenç, Aşır
dc.contributor.authorTekşen, Ümran M.
dc.contributor.authorAltındağ, İlkay
dc.date.accessioned2018-04-27T11:48:41Z
dc.date.available2018-04-27T11:48:41Z
dc.date.issued2010
dc.descriptionURL: http://sjam.selcuk.edu.tr/sjam/article/view/248en_US
dc.description.abstractIn this study, we are informed about some methods as alternatives to the classical least squares methods which are used for simple linear and multiple linear regression analysis. In short, linear regression model is shown via matrix as;Y=X?+? where Y is the vector belonging to dependent variable, X is the design matrix of independent variables, ? is the parameter vector, ?is the vector belonging to error terms, so the least squares estimator of the linear regression is shown by?=(X^{?-1}X?Y) Alternative methods have emerged on the purpose of outliers' existing in observations unlike the least squares estimation, data's not providing the regression assumptions or using of the previous information about parameters as well. In the study, we are informed about the least absolute deviations regression apart from the least squares method, artificial neural networks, M-regression, the nonparametric regression and Bayesian regression. On the purpose of comparison of the methods' results, numerical results are derived by using the temperature variation data in Antalya and Fethiye regions for simple regression analysis and variables affecting the fuel percentage in crude oil for multiple regression analysis.en_US
dc.identifier.citationGenç, A., Tekşen, Ü. M., Altındağ, İ. (2010). Comparison of some estimation methods in linear regression. Selcuk Journal of Applied Mathematics, 10, 95-108.en_US
dc.identifier.endpage108
dc.identifier.issn1302-7980en_US
dc.identifier.startpage95
dc.identifier.urihttps://hdl.handle.net/20.500.12395/10492
dc.identifier.volume10
dc.language.isoenen_US
dc.publisherSelcuk University Research Center of Applied Mathematicsen_US
dc.relation.ispartofSelcuk Journal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectLeast squares methoden_US
dc.subjectEn küçük kareler yöntemien_US
dc.subjectLeast absolute deviations regressionen_US
dc.subjectEn az mutlak sapma gerilemesien_US
dc.subjectArtificial neural networksen_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectM-regression methoden_US
dc.subjectM-regresyon yöntemien_US
dc.subjectNonparametric regressionen_US
dc.subjectParametrik olmayan regresyonen_US
dc.subjectBayesian regressionen_US
dc.subjectBayes gerilemesien_US
dc.titleComparison of some estimation methods in linear regressionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Asır Genç, Ümran M. Teksen, ˙Ilkay Altındağ.pdf
Boyut:
176.18 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: